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1 Introduction

Optimization problem structure plays an important
role in designing efficient algorithms. A common
structure, motivated by empirical risk minimization
(ERM), is the finite sum, that is, an optimization
problem of the form

min
x∈Rd

{
f(x)

def
=

1

n

n∑
i=1

fi(x)

}
, (1)

where the functions fi : Rd → R. Much has been
written about the complexity of stochastic and de-
terministic algorithms for solving (1) under vari-
ous general assumptions on f , such as smoothness
and convexity [7, 10, 11, 15, 19–21, 25, 26, 29–
31, 39, 41, 48, 49].

Motivated in part by the rise in machine learn-
ing, optimization research has focused on weaken-
ing these assumptions, as the problems of interest
are both nonconvex and nonsmooth. This has led
to tight upper bounds on complexity that match in-
formation theoretic lower bounds for very general
finite-sum problems [4, 23, 24, 42], and yet in spite
of this, there exists an enormous gap between these
theoretical guarantees and observed performance in
machine learning.

Indeed, even in the smooth, convex setting, there
is a missing component in our understanding of fi-
nite sum problems in machine learning. One pos-
sibility is simply the size of the finite sums. An
overarching trend in machine learning is to scale
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CIFAR-5m, Random Features

SGD n = 4,000
Predicted n = 4,000
SGD 6,000
Predicted, 6,000
SGD 10,000
Predicted, 10,000
SGD 20,000
Predicted, 20,000
Streaming SGD 
Streaming Predicted

Figure 1: Single runs of SGD vs. predicted dy-
namics (solid line) on standarized CIFAR-5M [40]
with car/plane class vector (1, 000, 000 samples); a
standarized ReLU, random features model was ap-
plied with increasing number of samples n and fixed
d = 6000. The predicted behavior, denoted by “pre-
dicted” (solid lines), without running SGD, matches
the performance of single runs of SGD for finite n
and streaming (n = ∞). See details in [46].

problems up, engineering solutions for the next or-
der of magnitude in problem size, measured both
by model complexity and data set size. In short,
machine learning problems are high-dimensional.

Another aspect of machine learning problems, be-
sides that they are high dimensional, is that they are
all stochastic: the data are random, the learning al-
gorithms are random, and the model initialization
is random. We propose that this trifecta of ran-
domness combined with high-dimensionality are the
missing structure from a theory of optimization for
machine learning.

The purpose of this article is to survey the re-
cent advances in developing a framework that incor-
porates high-dimensionality for analyzing stochastic
learning algorithms on a ℓ2-regularized least squares
problem [34, 45, 46]. The main idea, discussed
in detail in Section 2, is to import mathematical
ideas commonly used in random matrix theory. The
resulting framework yields predictions for learning
curves that are amenable to analysis and often ex-
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actly reproduce the behavior seen by popular al-
gorithms (e.g., stochastic gradient descent (SGD)
[48]) on real data sets (see e.g., Figure 1 and Fig-
ure 4). Finally we illustrate how one can use these
predictions to draw important insights on average-
case complexity and parameter selections such as
learning rate, momentum parameter, and batch size
(Section 4).
The use of tools from high-dimensional proba-

bility and random matrix theory for simplifying
the analysis of optimization algorithms is a rela-
tively new area in the machine learning literature
[9, 14, 17, 18, 38, 50]. It has been used to model
phenomena that, up until this point, had only been
observed in deep neural networks (e.g., double de-
scent), but which through random matrix theory are
revealed to be an artifact of high-dimensional data
[1, 2, 8, 22, 28, 35, 37, 52]. Beyond this, statistical
assumptions to reduce complexity of analyzing algo-
rithms were notably used in the compressed sensing
community (see, for example, [12, 43]).

2 Problem Set-Up

In this section, we develop ideas from random ma-
trix theory for incorporating high-dimensionality
into the analysis of learning algorithms. To formal-
ize the analysis, we define the ℓ2-regularized least
squares problem:

argmin
x∈Rd

{
f(x)

def
=

1

2
∥Ax− b∥2 + δ

2
∥x∥2

=

n∑
i=1

1

2

(
(aix− bi)

2 +
δ

n
∥x∥2

)
︸ ︷︷ ︸

def
= fi(x)

}
.

(2)

The design matrix A is size n × d, both of which
we take to be large, matching the idea that both
the data size (n) and the model complexity d are
big. The fixed parameter δ > 0 controls the regu-
larization strength and it is independent of n and
d. We do not require that n and d are proportional.
Instead, we need the following:

Assumption 2.1 (Polynomially related). There is
an α ∈ (0, 1) so that

dα ≤ n ≤ d1/α.

The data matrix A ∈ Rn×d and the labels b may
be deterministic or random; we formulate the theo-

rems for deterministic A and b in (2) satisfying var-
ious assumptions, and in the applications of these
theorems to statistical settings, we shall give ex-
amples of random A and b which satisfy these as-
sumptions. These assumptions are motivated by the
empirical risk minimization problem (ERM), and
in particular the case where the augmented matrix
[A | b] has rows that are independent and sampled
from some common distribution (see Section 2.1 for
details). We also note that the problem (2) is ho-
mogeneous, in that if we simultaneously divide A, b
and

√
δ by any desired scalar, we produce an equiv-

alent optimization problem. As such, we may also
adopt the following normalization convention with-
out loss of generality.

Assumption 2.2 (Data–target normalization).
There is a constant C > 0 independent of d and
n such that the spectral norm of A is bounded by C
and the target vector b ∈ Rn is normalized so that
∥b∥2 ≤ C.

2.1 Detour into random matrix theory

We are looking for deterministic assumptions on
(A, b) that capture the combination of the high-
dimensionality of the problem with the intrinsic ran-
domness seen in a machine learning setup.

As a motivating test case, consider the Gaussian
design case A = Z

√
Σ for a covariance matrix Σ.

For the target, consider the generative model with
noise b = Ax̃0 + η for x̃0 and η independent of A.

The Gaussian matrix A enjoys some spectacu-
lar distributional invariances. Most relevant here,
it satisfies that for any n × n orthogonal matrix O
the distribution of OA is the same as the distri-
bution of A. It follows as a consequence that in a
singular value decomposition of A = U

√
ΛV T , the

matrix U is independent of Λ and V and moreover
it can be taken uniformly distributed on the orthog-
onal group. For non-identity covarianceΣ, the same
is not generally true of the matrix of right–singular
vectors V .

This means that the left singular vectors of A re-
veal nothing on either x̃ or Σ. It is, however, a type
of optimization structure; and we shall further il-
lustrate that this uniform distribution has profound
consequences for the behavior of algorithms which
operate on batch subproblems (in particular mini-
batch SGD).
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CIFAR-10, slope = -0.28
CIFAR-10 RF, slope = -0.20
MNIST (99.99 percentile), slope = -0.35
MNIST RF (99.99 percentile), slope = -0.10
MNIST (full), slope = 0.06

Figure 2: Maximum off-diagonal entry of the
resolvent for CIFAR-5M [40] and MNIST
[33] data sets with features d fixed (3072 and
784, respectively), varying samples n = 2k for
k = 5, 6, . . . , 12. Random features (RF) model was
employed with n0 = 2000. In the MNIST (99.99
percentile) data set large resolvent outliers were re-
moved; when outliers not removed, MNIST data
set does not satisfy the off-diagonal resolvent con-
dition (5). For the other data sets, the off-diagonal
resolvent condition is satisfied. The theory still
works well for MNIST without modification (see
Figure 4), which suggests that (5) could be weak-
ened.

On the other hand, this is far too much to ask
for a general design A, even for one with strong
statistical assumptions such as independent identi-
cally distributed subgaussian rows. We would like
to generalize this assumption and ideally identify a
deterministic condition which captures some of the
consequences of this uniform distribution of eigen-
vectors.

One of the key tools in random matrix theory,
especially in the theory of universality1, is the re-
solvent of a matrix M defined by

R(z;M) = (zI−M)−1 z ∈ C \ σ(M), (3)

with σ(M) its spectrum.

Given a singular value decomposition for A =
U
√
ΛV T , this can be computed in terms of the sin-

gular vectors by

R(z;AAT ) = U(zI−Λ)−1UT

and R(z;ATA) = V (zI−Λ)−1V T .
(4)

Hence in the case of the Gaussian design, the resol-
vent R(z;AAT ) factorizes as a conjugation. More-
over U is independent of Λ and U is uniformly dis-
tributed over the orthogonal group.

Thus the off-diagonal and diagonal entries of

1Universality is the property of random matrices by which
eigenvalue and eigenvector statistics are common across all
large matrices having a given first and second moment struc-
ture (and sometimes 3rd and 4th) in their entries. For exam-
ple, sample covariance matrices, in which A = W

√
Σ for a

matrix of iid mean 0 variance 1 entries, are known to have
many common spectral properties.

R(z;AAT ) can be estimated by

R(z;AAT )ii ≈
1

n
trR(z;Λ)

and |R(z;AAT )ij | ≲ n−1/2.
(5)

Further, these estimates hold with very high proba-
bility and uniformly over all i, j. The same does not
hold for the other resolvent R(z;ATA) on account
of the non-uniform distribution of its singular vec-
tors (save for in the special case that Σ is scalar).
See Figure 2 for the behavior of the off-diagonal en-
try (5) on some popular data sets.
The property (5) generalizes to many other classes

of random matrices with independent rows. This
leads us to pose a family of assumptions on A and
b which encode some of the flavor of the uniform
distribution of left singular vectors of A.

Assumption 2.3. Suppose Ω is the contour enclos-
ing [0, 1+ ∥A∥2] at distance 1/2. Suppose there is a
θ ∈ (0, 12) for which

1. max
z∈Ω

max
1≤i≤n

|eTi R(z;AAT )b| ≤ nθ−1/2.

2. max
z∈Ω

max
1≤i ̸=j≤n

|eTi R(z;AAT )eTj | ≤ nθ−1/2.

3. max
z∈Ω

max
1≤i≤n

|eTi R(z;AAT )ei− 1
n trR(z;AAT )| ≤

nθ−1/2.

The second two assumptions thus encode, in a
weakened form, a consequence of the uniform dis-
tribution of left-singular vectors. The first assump-
tion additionally adds the interaction of the data
matrix with the target vector b. In the Gaussian
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design together with the generative model example
given above, it is also easily checked that this holds.
This assumption effectively shows that individual
samples have a controlled influence on solving the
minimization problem, which in some sense quan-
tifies that we are dealing with a high-dimensional
problem.

The relevance of the contour enclosing the spec-
trum is that this allows us to pass, by contour in-
tegration, from resolvent estimates to estimates of
other matrix functions, such as the ones that ap-
pear in describing the trajectories of first order algo-
rithms. For random matrices, there is rarely a spe-
cial contour of importance, and moreover the com-
plexity of checking that the bound on a contour is
roughly the same as checking the bound holds at any
z with a minimum separation from the spectrum of
AAT .

2.2 Algorithmic setup

Stochastic learning algorithms and their momentum
variants are the work horses in machine learning
due to their relatively cheap computational cost and
simple implementations.

We solve the ℓ2-regularized least-squares prob-
lem (2) using stochastic learning algorithms, and in
particular, stochastic gradient descent (SGD) with
learning rate γk. For an initial vector x0 ∈ Rd, we
define a sequence of SGD iterates {xk}∞k=0 which
obey the recurrence,

xk+1 = xk − γk∇fik(xk)
= xk − γkA

Teike
T
ik
(Axk − b)− γkδ

n xk .
(6)

The rows {i1, i2, . . . } are chosen uniformly at ran-
dom, and thus the batch size is one. The work of
[44] suggests that under similar (albeit more restric-
tive) assumptions, minibatch SGD with batch-size
β = o(n) produces the same dynamical behavior as
SGD after sampling single-batch SGD at iteration
counts βN. Therefore, we content ourselves with the
simpler case with batch size equal to one. In Sec-
tion 4, we will explore the effects of large batches on
SGD and its momentum variant, but for now, we
consider only β = o(n).

As we want to give descriptions of the dynamics of
SGD which are consistent across increasing dimen-
sions, we suppose that γk has a smoothly varying
schedule. Specifically, we suppose:

Assumption 2.4. There is a continuous bounded
function γ : [0,∞) → [0,∞) such that γk = γ(k/n)
for all k. As such

γ̂
def
= sup

t
γ(t) <∞.

Although the classic Robbins-Monro γk = 1
k does

not technically fit into this framework, for problems
in which Assumptions 2.2 and 2.3 are in effect (or
more generally where some non-trivial fraction of
the samples are needed to commence learning), the
classic 1/k rate is often too slow to produce any
practically relevant results. Moreover, from a the-
oretical point of view, such a rate produces a be-
havior similar to gradient flow (see (10)), and it
could be viewed as effectively non-stochastic. In
our high-dimensional setting, a suitable analogue
of the Robbins-Monro schedule that does satisfy
our assumptions and yields nontrivial behavior is
γk =

n
n+k = 1

1+k/n .

As for the initialization x0, we need to suppose
that it does not interact too strongly with the right
singular-vectors of A. In the spirit of Assumption
2.3, it suffices to assume the following:

Assumption 2.5. Let Ω be the same contour as in
Assumption 2.3 and let θ ∈ (0, 12). Then

max
z∈Ω

max
1≤i≤d

|eTi R(z;ATA)x0| ≤ nθ−1/2.

Note that, as a simple but common case, this as-
sumption is surely satisfied for x0 = 0. In principle,
this assumption is general enough to allow for x0

which are correlated with A in a nontrivial way, but
we do not have an application for such an initializa-
tion. For a large class of nonzero initializations in-
dependent from (A, b), this assumption is satisfied,
as a corollary of Assumption 2.3:

Lemma 2.6. Suppose that Assumption 2.3 holds
with some θ0 ∈ (0, 12) and that x0 is chosen ran-
domly, independent of (A, b), and with independent
coordinates in such a way that for some C indepen-
dent of d or n

∥Ex0∥∞ ≤ C/n

and max
i

∥(x0 − Ex0)i∥2ψ2
≤ Cn2θ0−1.

Assumption 2.5 holds with any θ > θ0 on an event
of probability tending to 1 as n→ ∞.
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Note that this assumption allows for determinis-
tic x0 having maximum norm O(1/n), as well as
iid centered subgaussian vectors of Euclidean norm
O(1).

2.3 Examples of data matrix and target

We highlight two examples for which the data ma-
trix A and target vector b satisfy Assumption 2.3
(proofs found in [46, Lemma 1.3 and Theorem 1.7]).
In both cases below, we take the initialization vector
x0 to be iid centered subgaussian with E [∥x0∥2] =
R̂ for R̂ > 0. Assumption 2.4 holds for this initial-
ization vector.

Sample covariance matrices and generative mod-
els. Suppose that Σ ⪰ 0 is a d × d matrix with
trΣ = 1 and ∥Σ∥ ≤ M/

√
d < ∞. The data matrix

A is a random matrix with A = Z
√
Σ where Z is

an n × d matrix of independent, mean 0, variance
1 entries with subgaussian norm at most M < ∞,
and we assume n ≤ Md. Finally suppose that b
satisfies a generative model, that is b = Aβ + η for
β,η iid centered subgaussian satisfying ∥b∥2 = R
and ∥η∥2 = R̃n

d for some R̃, R > 0. For data matrix
A and target vector generated this way, Assump-
tion 2.3 holds.

Random features model of a linear ground truth.
We follow the set-up based upon [1, 37]. This
model encompasses two-layer neural networks with
a squared loss, where the first layer has random
weights and the second layer’s weights are given
by the regression coefficients. Suppose the n × n0
data matrix X = ZΣ1/2/

√
n0 for an iid standard

Gaussian Z and the covariance matrix Σ satisfies
1/n0 tr(Σ) = 1 and ∥Σ∥ ≤ C for some C > 0. We
also suppose that W is an n0 × d iid feature ma-
trix having standard Gaussian entries and indepen-
dent of Z so that XW is a matrix whose rows are
standardized. We now apply an activation function
entry-wise. The activation function σ satisfies for
C0, C1 ≥ 0

|σ′(x)| ≤ C0e
C1|x|, for all x ∈ R

and for all Z ∼ N(0, 1), E [σ(Z)] = 0.
(7)

We now transform the data X ∈ Rn0×d by putting

A = σ(XW /
√
n0) ∈ Rn×d.

For the target vector b, we use a linear ground truth
model, that is, b = Xβ+ηw with β,w independent

isotropic subgaussian vectors with E [∥β∥2] = 1/n0
and E [∥w∥2] = 1 and η bounded, independent of
n. Assumption 2.3 holds for A and b generated this
way.

3 Predicting learning curves

A benefit of working in high-dimensional optimiza-
tion is that seemingly challenging tasks such as un-
derstanding the noise produced by SGD, become
much simpler due to concentration effects. In fact,
the entire training path taken by SGD concentrates
around a deterministic function. The function gives
a simple description of the exact learning curve of
SGD, depending only on the spectrum of AAT ,
the target b, and initial x0. In this way, one can
predict the training behavior of SGD without ever
running SGD. The idea hinges on exploiting the
trifecta of randomness in the problem and high-
dimensionality through concentration of measure.
Moreover, these predictions are amenable to anal-
ysis and one can draw important insights on typical
computational complexity and parameter selection
policies (see Section 4).
In a high-dimensional setting, this empirical risk

concentrates around a deterministic path Ψt. To de-
fine this path, we introduce the integrated learning
rate Γ and kernel K, for any d× d matrix P ,

Γ(t) =

∫ t

0
γ(s) ds, and

K(t, s;P ) = 1
nγ

2(s) tr

(
P (∇2L)

× exp
(
− 2(∇2L+ δId)(Γ(t)− Γ(s))

))
.

(8)

The path Ψt satisfies the Volterra integral equa-
tion:

Ψt = L
(
X

gf
Γ(t)

)
+

∫ t

0
K(t, s;∇2L)Ψs ds. (9)

The quantity X
gf
t is gradient flow which is the solu-

tion to the differential equation

dXgf
t = −∇f(Xgf

t ) dt, X
gf
0 = x0. (10)

For the ℓ2−regularized least squares problem, the
solution to gradient flow is explicitly solvable in
terms of x0, target b, and eigenvalues of ∇2L. Con-
sequently, due to (9) and as Theorem 3.4 will show,
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100

Training error, 1/2||Ax-b||^2
Volterra
n = 100
n = 400
n = 1600
n = 6400

10 1 100 101 102

epochs

100

2 × 100

3 × 100

Expected risk                   Volterra
n = 100
n = 400
n = 1600
n = 6400
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epochs
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1.1 × 100

1.2 × 100

1.3 × 100

1.4 × 100

1.5 × 100

1.6 × 100 Expected risk
SGD, n = 4000
Volterra

Figure 3: Concentration of SGD on training loss and expected risk, on a Gaussian random ℓ2-
regularized least-squares problem where β ∼ N(0, Id) is the ground truth signal and a generative model
b = Aβ + η where entries of η iid standard normal with ∥η∥22 = 2.25, n = 0.9d with ℓ2-regularization
parameter δ = 0.1, SGD was initialized at x0 ∼ N(0, 4Id) (independent of A, β); an 80% confidence
interval (shaded region) over 10 runs for each n, a constant learning rate for SGD was applied, γ = 0.8.
For expected risk, the samples a generated from same covariance as A. More volatility in the expected
risk across runs even for large n in comparison to the training error (left and center). The predicted Ωt
matches the performance of SGD on the expected risk even for a single run (right).

the training dynamics of SGD are completely pre-
dictable solely from the spectrum of ATA, target b,
and the initialization x0.
But one can do more. Generally, one wants to

study not only the training dynamics but also the
generalization performance of SGD, that is how well
the algorithm performs on unseen data. In this
sense, we need to be able to evaluate the iterates
of SGD, trained on f (2), on other statistics. We
will focus our attention on quadratics.

Definition 3.1. A function R : Rd → R is
quadratic if it is a degree-2 polynomial or equiva-
lently if can be represented by

R(x) = 1
2x

TTx+ uTx+ c

for some d× d matrix T , vector u ∈ Rd and scalar
c ∈ R. For any quadratic, define the H2–norm:

∥R∥H2
def
= ∥∇2R∥+ ∥∇R(0)∥+ |R(0)|
= ∥T ∥+ ∥u∥+ |c|.

(11)

For the learning path to concentrate on other
quadratic statistics, we require an additional as-
sumption in the same spirit as 2.3:

Assumption 3.2 (Quadratic statistics). Suppose
R : Rd → R is quadratic, i.e. there is a symmetric
matrix T ∈ Rd×d, a vector u ∈ Rd, and a constant
c ∈ R so that

R(xt) =
1
2x

T
t Txt + uTxt + c. (12)

We assume that R satisfies ∥R∥H2 ≤ C for some C
independent of n and d. Moreover, we assume the

following (for the same Ω and θ) as in Assumption
2.3:

max
z,y∈Ω

max
1≤i≤n

|eTi AT̂ATei − 1
n tr(AT̂AT )| ≤ ∥T ∥n−ϵ

where

{
T̂ = R(z)TR(y) +R(y)TR(z),

R(z) = R(z;ATA)
(13)

This assumption ensures that the quadratic R has a
Hessian which is not too correlated with any of the
left singular–vectors of A. Establishing Assump-
tion 3.2 can be non–trivial in the cases when the
quadratic has complicated dependence on A. In
simple cases, (especially for the case of the empiri-
cal risk and the norm) it follows automatically from
Assumption 2.3.

Lemma 3.3. Suppose that R satisfies (12) with T
given by a polynomial p in ATA (especially I and
the monomial ATA) having bounded coefficients,
and suppose u and c are norm bounded indepen-
dently of n or d. Then supposing Assumptions 2.2
and 2.3 for some θ0 ∈ (0, 12), for all n sufficiently
large and for any θ > θ0, Assumption 3.2 holds.

Thus for example R = L will satisfy Assumption
3.2, as will the simple Euclidean vector norm R =
∥ · ∥2.
The trajectory R(xt) concentrates around

Ωt = R
(
X

gf
Γ(t)

)
+

∫ t

0
K(t, s;∇2R)Ψs ds. (14)

Note the trajectories of gradient flows can computed
explicitly.
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Figure 4: SGD vs Theory on MNIST: MNIST (60000× 28× 28) images. Random features model on
MNIST used with n = 4000 images, random features d = 2000, and n0 = 28 × 28 was trained with one
run of SGD (middle) for various learning rates and regularization parameter 0.01; entries of the random
features Wij ∼ N(0, 1) and a normalized ReLu activation function σ(·) = (max{0, ·} − a)/b was applied.
The Volterra equation matches the dynamics of the training loss (least-squares), L, even with only one
run of SGD. The log(eigenvalues) of the covariance of the MNIST dataset and the random features matrix
used in the regression displayed (left). The expected risk, R(x) = 1

2E[(b − xTσ(xiW ))2] where xi is an
image from the MNIST test set, follows the predicted behavior Ωt. Both the predicted Ψt and Ωt match
the performance of SGD in this non-idealized setting.

Finally the comparision theorem is the following:

Theorem 3.4 (Concentration of SGD). Suppose n
and d are related by Assumption 2.1. Suppose the
ℓ2-regularized least-squares problem (2) satisfies As-
sumptions 2.2 and 2.3 where n ≥ dε̃ for some ε̃ > 0.
Suppose the learning rate schedule γ satisfies As-
sumption 2.4, and the initialization x0 satisfies As-
sumption 2.5. Let R : Rd 7→ R be any quadratic
statistic satisfying Assumption 3.2. Further assume
that R and L have bounded ∥R∥H2 and ∥L∥H2 in-
dependent of n or d, for some C ′ sufficiently large.
For any deterministic T > 0 and any D > 0, there
is a C > 0 such that

Pr

[
sup

0≤t≤T

∥∥∥∥(L(x⌊tn⌋)

R(x⌊tn⌋)

)
−
(
Ψt

Ωt

)∥∥∥∥ > d−ε̃/2
∣∣A, b,x0

]
≤ C ′d−D,

where Ωt solves (14) and xt are the iterates SGD.

A formal proof of Theorem 3.4 can be found in [46,
Theorem 1.4]. The functions Ψt and Ωt can be
viewed as the expected training loss and generaliza-
tion error. Theorem 3.4 then shows concentration
around the mean. We remark that to solve (8) we

need as input L(Xgf
Γ(t)) which be computed using

(10).
The solution of Ψt can be found by repeatedly

convolving the forcing term L(Xgf
Γ(t)) with the kernel

K (provided supt≥0 sups≥0K(t, s;∇2L) is bounded
[27]). Moreover, numerical approximations to (8)
can be found by taking a large but finite number of

convolutions in the expression above. The bounded-
ness of this solution corresponds precisely to learn-
ing rate choices for which SGD is convergent.

In the case of constant learning rate γ(s) ≡ γ,
more can be said. The Volterra equation (8) is of
convolution–type, and in fact is a special case of
the renewal equation [5] (allowing for defective and
excessive variants). Specifically, the expression in
(9) simplifies to

Ψt = L(Xgf
Γ(t))

+
γ2

n

∫ t

0
tr
(
(ATA)2e−2(ATA+δId)(t−s)

)
Ψs ds.

(15)
In addition to fixed point algorithms, one can also
use Laplace transform techniques. These solutions
to (15) can be analyzed explicitly for convergence
guarantees and rates of convergence, see [44, 45].
As a simple example writing K(t, s;P ) = K(t −
s;P ), the convergence of (15) occurs precisely when∫∞
0 K(t;∇2L) dt ≤ 1.2

Under the assumption that γ(s) stabilizes, i.e.
γ(s) → γ as s → ∞, we may still characterize
the eventual behavior of the solution. In the case
that R represents the population risk, the differ-
ence Ωt − R

(
X

gf
Γ(t)

)
gains the interpretation of the

excess risk of SGD over gradient flow. On taking

2See [5, Chapter V] for a general discussion. In the case
that the norm is exactly 1, this remains true as it is a special
case of the Blackwell renewal theorem. When the norm is
larger than 1, in the event that the empirical risk of gradient
flow is bounded away from 0, the training loss is divergent.
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t→ ∞, this converges to the excess risk of the SGD
estimator over the ridge regression estimator:

Theorem 3.5. If γ(t) → 0 but Γ(t) → ∞ as
t → ∞ (c.f. the Robbins-Monro setting), then Ωt −
R
(
X

gf
Γ(t)

)
−−−→
t→∞

0. If on the other hand γ(t) → γ̃ >

0, where the limiting learning rate satisfies

γ̃ < 2
(
1
n tr((A

TA)2(ATA+ δId)
−1)
)−1

, (16)

then with Ψ∞ given by the limiting empirical risk:

Ψ∞ = L
(
Xgf

∞
)
×
(
1− γ̃

2n
tr
(
(∇2L)2

(
∇2L+δId

)−1))−1

the limiting excess risk of SGD over ridge regression
is given by

Ωt −R
(
X

gf
Γ(t)

)
−−−→
t→∞

γ̃

2n
Ψ∞ × tr

(
(∇2R)(∇2L)

(
∇2L+ δId

)−1
)
.

Examples of statistics. We give some common
statistics that illustrate the versatility of our set-up.
One important quadratic statistic which satisfies

all assumptions in Section 2.3 is R(·) = 1
2∥ · −β∥2

where β is the unknown, ground truth signal.
Another common statistic in the standard linear

regression set-up is the population risk. We first
address the in-distribution set-up, where the data
is drawn from the same distribution as the popu-
lation. Let A be generated by taking n indepen-
dent d-dimensional samples from a centered distri-
bution Df with feature covariance Σf ∈ Rd×d, that
is Σf = E [aaT ], where a ∼ Df . We suppose a
new data point (a, b) is drawn from a distribution
D on Rd ×R with the property that E [b |a] = βTa
where (a, b) ∼ D and the data a ∼ Df . As before,
β is the ground truth signal. The vector xt gener-
ated by SGD represents an estimate of β, and the
population risk is

R(xt)
def
=

1

2
E
[
(b− xTt a)

2 |xt
]
, (17)

where (a, b) ∼ D.
In the case of out-of-distribution, the data matrix

A is generated using one distribution but the sample
(a, b) ∼ D is not drawn from the same distribution
as A, that is, a ∼ D̂f ̸= Df but still E [b|a] = βTa.
Finally for random features with a linear ground

truth, we would take

R(xt)
def
= E [(b− xTt σ(XiW /

√
n0))

2 |xt,W ]. (18)

All these examples are quadratic statistics for which
Theorem 3.4 applies.

4 Average-case Complexity & Pa-
rameter Selections

The dynamics of training curves for generic ob-
jective functions, in general, are quite compli-
cated. However, as we have seen, in the case of
ℓ2-regularized least squares problem under high-
dimensionality, the dynamics for stochastic learn-
ing algorithms are simple. As such, one can go fur-
ther and get additional information about the per-
formance of these algorithms. In this section, we
use the predictions of the exact training dynam-
ics to draw important insights on typical compu-
tational complexity and parameter selection (e.g.,
learning rate, batch size, and momentum parame-
ters). We will focus our attention on the widely used
stochastic gradient descent algorithm with momen-
tum (SGD+M) on the ℓ2-regularized least squares
problem with regularization parameter δ = 0 (e.g.,
minx 1/2∥Ax + b∥2). Mini-batch SGD+M is de-
fined by selecting uniformly at random a subset
Bk ⊆ {1, 2, · · · , n} of cardinality β and making the
update

xk+1 = xk − γ
∑
i∈Bk

∇fi(xk) + ∆(xk − xk−1)

= xk − γATPk(Axk − b) + ∆(xk − xk−1),

where Pk
def
=
∑
i∈Bk

eie
T
i ,

(19)

with Pk a random orthogonal projection matrix and
ei the i-th standard basis vector. Here γ > 0 is
the learning rate parameter, ∆ is the momentum
parameter, and the function fi is the i-th element
of the sum in (2). Note we are only considering the
constant learning rate and momentum setting. We
define the batch fraction ζ as the ratio of β/n.

When the stochastic gradient in (19) is replaced
with the full-gradient ∇f(x) and the hyperparame-
ters are chosen optimally, the resulting algorithm is
the celebrated heavy-ball momentum (a.k.a. Polyak
momentum) [47]. The optimal learning rate and mo-
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mentum parameters are explicitly given by

γ =
4

(
√
σ2max +

√
σ2min)

2

and ∆ =

√σ2max −
√
σ2min√

σ2max +
√
σ2min

2

.

(20)

It is well-known that heavy-ball is an optimal algo-
rithm on the least squares problem in that it con-
verges linearly at a rate of O(1/

√
κ).

In the influential work of [51], the authors em-
pirically show that SGD+M significantly improves
training performance of deep neural networks. De-
spite its wide usage in machine learning practice,
our understanding of it is more narrow. It has
been hypothesized that SGD+M improves train-
ing because it is employed on a large batch of a
data set [32], thereby emulating the speed-up one
sees in full-batch settings. For many learning prob-
lems, the “large batch” setting is often paired with
high-dimensional problems, meaning there are many
samples (and likely also many features to have in-
teresting behavior). There have been some recent
works in proving that for sufficiently large batch
sizes SGD+M does achieve O(1/

√
κ) [13, 16]; see

also [3, 30, 36]. We can go further and find the cor-
rect batch size dependency in the high-dimensional
regime.
First, we address how the batch effects the train-

ing dynamics.

Theorem 4.1 (Concentration of mini-batch mo-
mentum). Suppose the assumptions of Theorem 3.4
hold. For any deterministic T > 0 and any D > 0,
there is a C > 0 such that

Pr

[
sup

0≤k≤T

∣∣L(xk)−Ψk

∣∣ > d−ε̃/2
∣∣A, b,x0

]
≤ C ′d−D,

where Ψk solves a discrete convolution-type Volterra
equation

Ψk+1 = L(x
GD+M(γζ)
k+1 )+

k∑
t=0

K(k−t;∇2L)Ψt. (21)

Here K(k) is a kernel completely determined by the

spectrum of ∇2L and
{
x
GD+M(γζ)
k

}
are the iterates

generated by running full-batched momentum (i.e.,
ζ = 1 in (19)) with learning rate given by ζγ and
momentum parameter ∆.

The expression for (21) can be viewed as a dis-
crete convolution-type Volterra equation with forc-

ing term L(x
GD+M(γζ)
k ) and kernel K(t;∇2L). The

forcing term, F (k) = L(x
GD+M(γζ)
k ) represents the

mean (with respect to expectation over the mini-
batches) behavior of SGD+M. For small learning
rates γ, the forcing term controls the dynamics of
Ψk. We denote the dominant term in F (k) by
λmax(γ,∆, ζ), that is F (k) = O(λkmax). Specifically,

λj
def
=

−2∆ + Ω2
j +

√
Ω2
j (Ω

2
j − 4∆)

2
,

where Ωj
def
= 1− γζσ2j +∆,

λmax
def
= max

1≤j≤n
|λj |, and σ2j , eigenvalue of AAT .

(22)
On the other hand, the kernel term, or convolu-

tion in (21),
∑k

t=0K(k − t,∇2L)Ψt, is due to the
inherent stochasity generated by uniformly at ran-
dom selecting indices. The presence of Ψt (training
loss) in this term is due to the fact that the noise
generated by the k-th stochastic gradient is propor-
tional to Ψt, and the function K(k − t) represents
the progress of the algorithm in sending this extra
noise to 0. We note that the kernel K(k− t) in (21)
scales quadratically in the learning rate γ. Hence for
large learning rates, the kernel dominates the decay
behavior of Ψk.

There are also some key relationships between
Theorem 3.4 (batch sizes ζ → 0) and Theorem 4.1,
notably that (when ∆ = 0), gradient flow in the
forcing term of (9) becomes gradient descent (21)
– discrete gradient flow. A similar discretization is
observed in the kernel with an integral replaced by
a summation.

4.1 Convolution Volterra analysis

We begin by establishing sufficient conditions for the
convergence of the solution to the Volterra equation
(21), a special case of the renewal equation ([6]).
Let us translate (21) into the form of the renewal
equation as follows:

ψ(t+ 1) = F (t+ 1) + (K̃ ∗ ψ)(t), (23)

where (f ∗g)(t) =
∑∞

k=0 f(t−k)g(k). Let the kernel
norm be ∥K̃∥ =

∑∞
t=0 K̃(t). By [6, Proposition 7.4],

we see that ∥K̃∥ < 1 is necessary for our solution to
the Volterra equation to be convergent. Indeed, we
have the following result.
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Proposition 4.2. If the norm ∥K̃∥ < 1, the algo-
rithm is convergent in that

Ψ∞
def
= lim

k→∞
Ψk =

lim
k→∞

L(x
GD+M(γζ)
k )

1− ∥K̃∥
. (24)

Proposition 4.2 formulates the limit behaviour of
the objective function in both the over-determined
and the under-determined cases of least squares.
When under-determined, the limiting loss value of

L(x
GD+M(γζ)
k ) = 0 and the limiting Ψ∞ is 0; other-

wise the limiting loss value is strictly positive. The
result (24) only makes sense when the noise term K
satisfies ||K|| < 1; the next proposition illustrates
the conditions on the learning rate and the trace of
the eigenvalues of AAT such that the kernel norm
is less than 1.

Proposition 4.3 (Convergence threshold). Under
the learning rate condition γ < 1+∆

ζσ2
max

and trace

condition (1−ζ)γ
1−∆ · 1

n tr(AAT ) < 1, the kernel norm

∥K̃∥ < 1 , i.e.,
∑∞

t=0 K̃(t) < 1.

The learning rate condition quantifies an upper
bound of good learning rates by the largest eigen-
value of the covariance matrix σ2max, batch fraction
ζ, and the momentum parameter ∆. The trace con-
dition illustrates a constraint on the growth of σ2max.
Moreover, for a full batch gradient descent model
(ζ = 1), the trace condition can be dropped and we
get the classical learning rate condition for gradient
descent.

4.2 The Malthusian exponent and com-
plexity

The rate of convergence of Ψk is essentially the worse
of two terms – the forcing term F (t) and a dis-
crete time convolution

∑k
t=0K(k− t;∇2L)Ψt which

depends on the kernel K. Intuitively, the forcing
term captures the behavior of the expected value
of SGD+M and the discrete time convolution cap-
tures the slowdown in training due to noise created
by the algorithm. Note that F (k) is always a lower
bound for Ψk, but it can be that Ψk is exponen-
tially (in k) larger than F (k) owing to the convolu-
tion term. This occurs when something called the
Malthusian exponent, denoted Ξ, of the convolution
Volterra equation exists. The Malthusian exponent

Ξ is given as the unique solution to

γ2ζ(1− ζ)

∞∑
t=0

ΞtK(t;∇2L) = 1, if solution exists.

(25)
The Malthusian exponent enters into the complexity
analysis in the following way:

Theorem 4.4 (Asymptotic rates). The inverse of
the Malthusian exponent always satisfies Ξ−1 > Λ
for finite n. Moreover, for some C > 0, the conver-
gence rate for SGD+M is

Ψk −Ψ∞ ≤ Cmax{λmax,Ξ
−1}k

and lim
t→∞

(Ψk −Ψ∞)1/k = max{λmax,Ξ
−1}.

(26)

Thus to understand the rates of convergence, it is
necessary to understand the Malthusian exponent
as a function of γ and ∆.

4.3 Two regimes for the Malthusian ex-
ponent

On the one hand, the Malthusian exponent Ξ comes
from the stochasticity of the algorithm itself. On
the other hand, λmax(γ,∆, ζ) is determined com-
pletely by the problem instance information — the
eigenspectrum of AAT . (Note we want to empha-
size the dependence of λmax on the learning rate,
the momentum parameter, and the batch fraction).
Let σ2max and σ2min denote the maximum and min-
imum nonzero eigenvalues of AAT , respectively.
For a fixed batch fraction, the optimal parameters
(γλ,∆λ) of λmax are

γλ =
1

ζ

(
2√

σ2max +
√
σ2min

)2

and ∆λ =

(√σ2max −
√
σ2min√

σ2max +
√
σ2min

)2

.

(27)

In the full batch setting, i.e. ζ = 1, these opti-
mal parameters γλ and ∆λ for λmax are exactly the
Polyak momentum parameters (20). Moreover, in
this setting, there is no stochasticity so the Malthu-
sian exponent disappears and the convergence rate
(26) is λmax. We observe from (27) that for all fixed
batch fractions, the optimal momentum parameter,
∆λ, is independent of batch size. The only depen-
dence on batch size appears in the learning rate. At
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first it appears that for small batch fractions, one
can take large learning rates, but in that case, the
inverse of the Malthusian exponent Ξ−1 dominates
the convergence rate of SGD+M (26) and you can-
not take γ and ∆ to be as in (27) (See Figure 5).

We will define two subsets of parameter space:
the problem constrained regime and the algorith-
mically constrained regime (or stochastically con-
strained regime). The problem constrained regime
is for some tolerance ε > 0

{(γ,∆) : 1−
√
Ξ < (1−

√
λ−1
max)(1− ε)}. (28)

The remainder we call the algorithmically con-
strained regime. To explain the tolerance: for finite
n, it transpires that we always have Ξ−1 > λmax,
but it could be vanishingly close to λmax as a func-
tion of n. Hence we introduce the tolerance to give
the correct qualitative behavior in finite n.

Proposition 4.5. If the learning rate γ ≤
min( 1+∆

ζσ2
max

, (1−
√
∆)2

ζσ2
min

), with the trace condition

8(1−ζ)γ
1−∆ · 1

n tr(A
TA) < 1, then (γ,∆) is in the prob-

lem constrained regime with ε = 1/2.

Therefore by (26), we have that

Ψt −Ψ∞ ≤ D

(
4λmax

(1 +
√
λmax)2

)t
,

for some D > 0;

(29)

we note that the expression in the parenthesis is
1− 1

2(1− λmax) +O((1− λmax)
2).

In the problem constrained regime, it is worth-
while to note that the overall convergence rate is
the same as full batch momentum with adjusted
learning rate, i.e., the batch size does not play an
important role as long as we are in the problem con-
strained regime.

4.4 Performance of SGD+M: implicit
conditioning ratio (ICR)

An advantage of the exact loss trajectory is that
we give a rigorous definition of the large batch and
small batch regimes which reflect a transition in the
convergence behavior of SGD+M. To do this we in-
troduce the condition number κ, the average condi-
tion number κ̄, and the implicit conditioning ratio

(ICR) defined as

κ̄
def
=

1
n

∑
j∈[n] σ

2
j

σ2min

<
σ2max

σ2min

def
= κ

and ICR
def
=

κ̄√
κ
.

(30)

Here σ2j are the eigenvalues of the Hessian of the

least squares problem with σ2max and σ
2
min the largest

and smallest (non-zero) eigenvalues. We refer to the
large batch regime where ζ ≥ ICR and the small
batch regime where ζ ≤ ICR.

We begin by giving a rate guarantee that holds in
the problem constrained regime, for a specific choice
of γ and ∆.

Proposition 4.6 (Good momentum parameters).
Suppose the learning rate and momentum satisfy

γ =
(1−

√
∆)2

ζσ2min

and

∆ = max

{(
1− C

κ̄

1 + C
κ̄

)
,

(
1− 1√

2κ

1 + 1√
2κ

)}2

,

where C def
= ζ/(8(1− ζ)).

(31)

Then λmax = ∆ and for some C > 0, the conver-
gence rate for SGD+M is

Ψt −Ψ∞ ≤ C ·∆t

= C ·max

{(
1− C

κ̄

1 + C
κ̄

)
,

(
1− 1√

2κ

1 + 1√
2κ

)}2t

.
(32)

Remark 1. We note that for all ∆ satisfying
(1−

√
∆)2

ζσ2
min

≤ (1+
√
∆)2

2ζσ2
max

with the learning rate γ as in

(31), we have that λmax = ∆. By minimizing the ∆
(i.e., by finding the fastest convergence rate), we get
the formula for the momentum parameter in (31).

The exact tradeoff in convergence rates (32) oc-
curs when

C
κ̄
=

1√
2κ
, or ζ =

8√
2
ICR

1 + 8√
2
ICR

. (33)

As ζ ≤ 1, this condition is only nontrivial when
ICR ≪ 1, in which case ζ = 8√

2
ICR, up to vanishing

errors.
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Figure 5: Different convergence rate regions: problem constrained regime versus algorithmi-
cally constrained regime for Gaussian random least squares problem with (n = 2000 × d = 1000).
Plots are functions of momentum (x-axis) and learning rate (y-axis). Analytic expression for λmax (see
(22)) – convergence rate of forcing term F (t) – given in (top row, column 1) represents the problem
constrained region. (top row, column 2) plots 1/(Malthusian exponent) ((25)); black region is where the
Malthusian exponent Ξ does not exist. This represents the algorithmically constrained region. Finally,
(top row, column 3 and bottom row) plots convergence rate of SGD+M = max{λmax,Ξ

−1}, (see (26)), for
various batch fractions. When the Malthusian exponent does not exist (black), λmax takes over the con-
vergence rate of SGD+M; otherwise the noise in the algorithm (i.e. Malthusian exponent Ξ) dominates.
Optimal parameters that maximize λmax denoted by Polyak parameters (orange circle, (27)) and the op-
timal parameters for SGD+M (orange dot); below red line is the problem constrained region; otherwise
the algorithmic constrained region. When batch fractions ζ = 0.85 and ζ = 0.7 (top row and bottom row,
column 1) (i.e., large batch), the SGD+M convergence rate is the deterministic momentum rate of 1/

√
κ.

As the batch fraction decreases (ζ = 0.25), the convergence rate becomes that of SGD and the optimal
parameters of SGD+M and Polyak parameters are quite far from each other. The Malthusian exponent
(algorithmically constrained region) starts to control the SGD+M rate as batch fraction → 0.
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Figure 6: ICR and batch saturation on MNIST
data. SGD with momentum using a batch fraction
ζ on MNIST data [33]; training loss is given after 20
iterations. Increasing the batch size yields propor-
tional complexity improvements up to a saturation
point (gray dot, explicit formula in [34]) which oc-
curs before the full gradient is deployed. This yields
the first provable optimal linear rate for stochastic
momentum learning algorithm that matches its de-
terministic equivalent.

Large batch (ζ ≥ ICR). In this regime
SGD+M’s performance matches the performance of
the heavy-ball algorithm with the Polyak momen-
tum parameters (up to absolute constants). More
specifically, with the choices of γ and ∆ in Proposi-
tion 4.6, the linear rate of convergence of SGD+M
is 1 − c√

κ
for an absolute c. Note that ζ does not

appear in the rate, and in particular there is no gain
in convergence rate by increasing the batch fraction.

Small batch (ζ ≤ ICR). In the small batch
regime, the value of C is relatively small and the
first term is dominant in (32), and so the linear rate
of convergence of SGD+M is 1− cζ

κ for some absolute
constant c > 0. In this regime, there is a benefit in
increasing the batch fraction, and the rate increases
linearly with the fraction. We note that on expand-
ing the choice of constants in small ζ the choices
made in Proposition 4.6 are

∆ ≈ 1− ζ

8κ
and γ ≈ ζ

256κ2σ2min

.

This rate can also be achieved by taking ∆ = 0, i.e.
mini-batch SGD with no momentum. Moreover, it

is not possible to beat this by using momentum; we
show the following lower bound:

Proposition 4.7. If ζ ≤ min{1
2 , ICR} then there is

an absolute constant C > 0 so that for convergent
(γ,∆) (those satisfying Proposition 4.3),

√
λmax ≥

1− Cζ
κ .

This is a lower bound on the rate of convergence
by Theorem 4.4.

Conclusions. While the engineering side of ma-
chine learning has leapt ahead, the theoretical ex-
planation for what is happening in ML training has
largely been left behind. The needed theory of op-
timization to close this gap should fit 3 key aspects:
(1) the algorithm is a gradient-based method, (2)
the training loss is a high–dimensional “finite-sum”,
and (3) the model is “the right type” of nonconvex
problem.
In this work, we presented a theory that does 2

of the 3; we outlined a framework for addressing
this gap between theory and practice by incorpo-
rating a deterministic resolvent condition into the
assumptions. For the ℓ2-regularized least squares
problem, the stochastic learning algorithms concen-
trate around a simple, predictable path. By analyz-
ing this path, one can draw insights into average-
case complexity and parameter selection properties,
all of which have enormous practical implications
for making machine learning work.
Clearly the most urgent direction of future re-

search is away from the least squares setting, to
handle more general losses and some types of non-
convexity. On the one hand, there is evidence that
the right type of nonconvex problems are not so
far from convex, taking to heart that, for exam-
ple, wide neural networks degenerate to kernel re-
gression problems, which are covered by this frame-
work. On the other hand, as we move away from the
least squares setting, we truly do not know what
we do not know; there are many other important
model problems which need the high-dimensional
optimization treatment, such as generalized linear
models, inverse problems like phase retrieval, and
neural networks.
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