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Research Directions

(1). Thesis Work
I acceleration
I nonsmooth analysis of eigenvalues
I composite nonlinear models (h ◦ c)
I statistical guarantees for nonconvex problems

(2). Post doc
I stochastic optimization
I constrained conjugate gradient

(1). Local search for non-smooth and non-convex problems
(2). Adaptive line search for stochastic optimization
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Local search for non-smooth and non-convex problems

Joint work with D. Davis, D. Drusvyatskiy, and K. MacPhee
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Why study nonsmooth and nonconvex optimization?

min
x

g(x)

Nonsmooth and nonconvex losses arise often...
Structure (sparsity), robustness (outliers), stability (better conditioning)

Common problem class: (convex) ◦ (smooth)

(Fletcher ’80, Powell ’83, Burke ’85, Wright ’90, Lewis-Wright ’08, Cartis-Gould-Toint ’11)

Global convergence guarantees for composite class
Drusvyatskiy-P ’18; (Math. Program)
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Local search

min
x

g(x),

(
e.g. g(x) =

m∑
i=1

gi(x)

)

Strategy:
Find a moderately accurate solution x̂ at a low sample complexity cost
Refine x̂ with a rapidly converging algorithm
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Local search

min
x

g(x), g is nonconvex and nonsmooth

(
e.g. g(x) =

m∑
i=1

gi(x)

)

Strategy:
Find a moderately accurate solution x̂ at a low sample complexity cost
Refine x̂ with a rapidly converging algorithm

Is there a generic gradient-based local search procedure for nonsmooth and
nonconvex problems?
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Local search

min
x

g(x)

Strategy:
Find a moderately accurate solution x̂ at a low sample complexity cost
Refine x̂ with rapidly converging algorithm

Gradient-based methods
convex + regularity⇒ rapid convergence

Regularity condition
Sharpness: A function g : Rd → R is µ-sharp if

g(x)−min g ≥ µ · dist(x;S), for all x ∈ Rd

where S is the set of minimizers of g.

Convergence rates:
(Prox) gradient: sharpness + convexity⇒ quadratic
Subgradient (Shor ’77, ’Polyak 67): sharpness + convexity⇒ linear
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Example: Robust Phase Retrieval
Problem: Find x ∈ Rd such that

(aTi x)2 ≈ bi a1, . . . , am ∈ Rd, b1, . . . , bm ∈ R.

Composite formulation:

min
x

g(x) :=
1

m

m∑
i=1

|(aTi x)2 − bi|

Assumptions: ai ∼ N(0, Id) independently and b = (Ax̄)2 for some x̄ ∈ Rd.

Consequences: ∃ constants β, α > 0 such that with probability 1− e−cm
Weakly-convex: (Duchi-Ruan ’17)

y 7→ g(y) +
ρ

2
‖y‖22 is convex

Sharpness: (Eldar-Mendelson ’14)

g(x) ≥ α ‖x̄‖2 dist(x, {±x̄}).

Holds even when 1/2 the points are corrupted!
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Intuition

g approximates the population objective:

gP (x) = Ea∼N [|〈a, x〉2 − 〈a, x̄〉2|]
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Good neighborhood

min
x

g(x), where g is µ-sharp and ρ-weakly convex.
(convex) ◦ (smooth) structure always weakly-convex

Local Search Procedure
Find a moderately accurate solution x̂ at a low sample complexity cost
Refine x̂ with a rapidly converging algorithm

Lemma (Davis-Drusvyatskiy-MacPhee-P)
No extraneous stationary points of g lie in the tube:

T :=
{
x ∈ Rd : dist(x;S) < µ

ρ

}
“Lipschitz” constant: L := sup {‖ξ‖ : ξ ∈ ∂g(x), x ∈ T } .

κ = L
µ
acts like the “condition” number

Eg.: phase retrieval
spectral initialization (Wang et al. ’16, Duchi-Ruan ’17)
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Meta-Theorem:

Simple algorithms for sharp and weakly convex functions converge rapidly

Polyak subgradient method:

x+ = x−
(
g(x)−inf g

‖v‖2

)
v where v ∈ ∂g(x).

Thm: (Polyak ’67, Davis-Drusvyatskiy-MacPhee-P ’17)
Suppose that g is

ρ-weakly convex (meaning g + ρ
2 ‖·‖

2 is convex)
L-Lipschitz
µ-sharp
dist(x0, S) ≤ µ

2ρ

Then
dist(xk+1, S)

dist(xk, S)
≤

√
1−

(
µ

L
√

2

)2

, for all k.

Eg: phase retrieval
µ
ρ ,

µ
L are dimension independent w.h.p. (Eldar-Mendelson ’14)
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Subgradient methods

What happens when inf g is unknown?

Subgradient method geometrically decaying stepsize:

xt+1 = xt −
(√

(1−
(µ
L

)2
)

)t
vt
‖vt‖ where v ∈ ∂g(x).

Thm: (Goffin ’77, Shor, Davis-Drusvyatskiy-MacPhee-P ’17)
Suppose g is

ρ-weakly convex
L-Lipschitz, µ-sharp
dist(x0, S) < µ

ρ

Then,

dist2(xt, S) ≤ µ2

ρ2

(
1−

(µ
L

)2
)t
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Numerical Experiments
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Figure: Subgradient geometric decaying: Robust phase retrieval
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Other examples

Robust PCA (Candes et al. ’11, Chandrasekaran et al. ’11, Netrapalli et al. ’14)

min
X∈Rd×r,Y ∈Rr×k

‖XY −D‖1

Blind deconvolution/bi-convex sensing (Ling-Strohmer ’15, Ahmed et al. ’14)

min
x,w

1

m

m∑
i=1

|〈ai, w〉〈ri, x〉 − bi|

Covariance Estimation (Chen et. al ’15, Davis-Drusvyatskiy-MacPhee-P ’18)

min
x

1

m

m∑
i=1

|〈XXT , a2ia
T
2i − a2i−1a

T
2i−1〉 − (b2i − b2i−1)|

conditional value-at-risk, dictionary learning, group
synchronization,...
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Open questions and extensions

Conclusions

local search procedure for nonsmooth, nonconvex problems
Statistical well-posedness⇒ good initialization strategies and regularity

Examples
Robust phase retrieval, covariance estimation, blind deconvolution...
Matrix factorization?? Robust PCA??

Extensions

Stochastic variants with rates in expectation (Davis-Drusvyatskiy-P ’17,
Duchi-Ruan ’17, Davis-Drusvyatskiy ’18)

Bregman divergences (measure sharpness/Lipschitz w.r.t. norm other
than ‖·‖2) (Davis-Drusvyatskiy-MacPhee ’18)
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Adaptive line search method
for smooth stochastic optimization

Joint work with K. Scheinberg
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Stochastic optimization

min
x

Eξ∼P [f̃(x; ξ)]

Stochastic gradient descent (SGD):

xk+1 ← xk − αgk where gk = ∇f̃(xk; ξ)

Major drawback: stepsize, α, requires lots of tuning

Deterministic setting: Use line search techniques

Question:
Can the line search technique be adapted

to the stochastic setting?
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(Deterministic) Backtracking Line Search

Classical problem
min
x∈Ω

f(x)

f : Ω→ R with L-Lipschitz gradient

Gradient descent: xk+1 = xk − α∇f(xk), α ∈ (0, 1/L]

Backtracking Line Search Algorithm
Compute f(xk) and∇f(xk)

Check sufficient decrease (Armijo ’66)

Successful: xk+1 = xk − αk∇f(xk) and increase αk ⇒ αk+1 = γ−1αk

Unsuccessful: xk+1 = xk and decrease αk ⇒ αk+1 = γαk
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Stochastic setting

Stochastic problem
min
x∈Ω

f(x)

f : Ω→ R with L-Lipschitz gradients
f(x) is stochastic, given x obtain estimate f̃(x; ξ) and ∇f̃(x; ξ) where ξ
is random variable
Central task in machine learning

f(x) = Eξ∼P [f̃(x; ξ)]

I Empirical risk minimization: ξi is a uniform r.v. over training set
I More generally: ξ is any sample or set of samples from data distribution
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Question
Can the line search technique be adapted to stochastic setting using only

knowable quantities?

Knowable quantities: e.g. bound on variance of ∇f̃ , f̃
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Related works

Line search & heuristics Previous work requires: ∇f(x), αk → 0

Bollapragada, Byrd, and Nocedal; “Adaptive sampling strategies for
stochastic optimization” (to appear in SIOPT 2017)
Friedlander and Schmidt; “Hybrid deterministic-stochastic methods for
data fitting” (2012, SIAM Sci. Comput)
Mahsereci and Hennig; “Probabilistic line search for stochastic
optimization” (JMLR 2018; NIPS 2015)
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Stochastic backtracking line search

Compute stochastic estimates gk︸︷︷︸
∇f(xk)

, fk︸︷︷︸
f(xk)

, and f+
k︸︷︷︸

f(xk−αkgk)

Check sufficient decrease (Armijo ’66)
f+
k ≤ fk − θαk ‖gk‖

2

Successful: xk+1 = xk − αkgk and increase αk ⇒ αk+1 = γ−1αk

Unsuccessful: xk+1 = xk and decrease αk ⇒ αk+1 = γαk

Challenges

f+
k ≤ fk − θαk ‖gk‖

2 ??⇒ f(xk − αkgk) ≤ f(xk)− θαk ‖∇f(xk)‖2

Bad function estimates may ↑ objective value
Increase at most α2

k ‖gk‖
2

Stepsizes, αk, become arbitrarily small
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Stochastic line search

Algorithm
Compute random estimate of the gradient, gk
Compute random estimate of fk ≈ f(xk) and f+

k ≈ f(xk − αkgk)
Check the stochastic sufficient decrease

f+
k ≤ fk − θαk ‖gk‖

2

Successful: xk+1 = xk − αkgk and αk ↑ ⇒ αk+1 = γ−1αk

I Reliable step: If αk ‖gk‖2 ≥ δ2k, ↑δk ⇒ δ2k+1 = γ−1δ2k
I Unreliable step: If αk ‖gk‖2 < δ2k, ↓δk ⇒ δ2k+1 = γδ2k

Unsucessful: xk+1 = xk, decrease αk, and decrease δk
⇒ αk+1 = γαk and δ2

k+1 = γδ2
k.
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Randomness assumptions
Accurate gradient gk w/ prob. pg:

Pr(‖gk −∇f(xk)‖ ≤ αk ‖gk‖ | past) ≥ pg

Accurate function estimates fk and f+
k w/ prob. pf :

Pr(|f(xk)− fk| ≤ α2
k ‖gk‖

2

and |f(xk − αkgk)− f+
k | ≤ α

2
k ‖gk‖

2 | past) ≥ pf

Variance condition

E[|fk − f(xk)|2 | past] ≤ θ2δ4
k (same for f+

k ).

Question: How to choose these probabilities (pf , pg) large enough?

pf , pg ≥ 1/2 at least, but pf should be large.
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Satisfying randomness assumptions

min
x∈Rn

f(x) = Eξ∼P [f̃(x; ξ)]

and bound on variance

Eξ∼P (‖∇f̃(x, ξ)−∇f(x)‖2) ≤ Vg, Eξ∼P (|f̃(x; ξ)− f(x)|2) ≤ Vf .

Example: sampling

gk =
1

|Sg|
∑
i∈Sg

∇f(xk; ξi), fk =
1

|Sf |
∑
i∈Sf

f(xk; ξi).

How many samples do we need?

Chebyshev Inequality

|Sg| ≈ Õ

(
Vg

α2
k ‖gk‖

2

)
, |Sf | ≈ Õ

(
max

{
Vf

α4
k ‖gk‖

4 ,
Vf
δ4
k

})
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Stochastic Process
Random process {Φk,Ak} ≥ 0
Stopping time Tε
Wk biased random walk with probability p > 1/2

Pr(Wk+1 = 1| past) = p and Pr(Wk+1 = −1| past) = 1− p.

Assumptions
(i) ∃ Ā with

Ak+1 ≥ min
{
AkeλWk+1 , Ā

}

(ii) ∃ nondecreasing h : [0,∞)→ (0,∞) such that

E[Φk+1| past] ≤ Φk − h(Ak).

Optimization viewpoint
Φk is progress toward optimality
Ak is step size parameter
Tε is the first iteration k to reach accuracy ε
Ā = 1/L
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(i) ∃ Ā with

Ak+1 ≥ min
{
AkeλWk+1 , Ā
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Stochastic process

Thm: (Blanchet, Cartis, Menickelly, Scheinberg ’17)

E[Tε] ≤
p

2p− 1
· Φ0

h(Ā)
+ 1.

Convergence result
E[Tε] = expected number of iterations until reach accuracy ε

Main idea of proof:
Φk is a supermartingale and Tε is a stopping time
Compute expected number of times (renewals, N(Tε)) Ak returns to Ā
before Tε (Wald’s Identity)
Optional stopping time relates expected renewals to supermartingale
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Convergence result: relationship to line search
Key observations

Φk = ν(f(xk)− fmin) + (1− ν)αk ‖∇f(xk)‖2︸ ︷︷ ︸
balance each other

+(1− ν)θδk
2

Ak = αk, random walk with p = pgpf

Tε = inf{k ≥ 0 : ‖∇f(xk)‖ < ε}
Ā = 1/L

Thm: (P-Scheinberg ’18) If

pgpf > 1/2 and pf sufficiently large,

E[Φk+1 − Φk| past] ≤ −
(
αk ‖∇f(xk)‖2 + θδ2

k

)
Proof Idea:
(1) accurate gradient + accurate function est.⇒ Φk ↓ by αk ‖∇f(xk)‖2

(2) all other cases Φk ↑ by αk ‖∇f(xk)‖2 + θδ2
k

(3) Choose probabilities pf , pg so that the (1) occurs more often
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Convergence result, nonconvex

Stopping Time
Tε = inf{k : ‖∇f(xk)‖ < ε}

Convergence rate, nonconvex (P-Scheinberg ’18)

If pgpf > 1/2 and pf sufficiently large,

E[Tε] ≤ O
(

1

ε2

)
.
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Convex case
Assumptions:

f is convex and ‖∇f(x)‖ ≤ Lf for all x ∈ Ω

‖x− x∗‖ ≤ D for all x ∈ Ω

Stopping time: Tε = inf{k : f(xk)− f∗ < ε}

Key observation:

Φk = 1
νε −

1
Ψk

where Ψk = ν(f(xk)− fmin) + (1− ν)αk ‖∇f(xk)‖2 + (1− ν)θδ2
k

(Convergence rate, convex) (P-Scheinberg ’18)

If pgpf > 1/2 and pf sufficiently large,

E[Tε] ≤ O
(

1

ε

)
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Strongly convex case

Stopping Time: Tε = inf{k : f(xk)− f∗ < ε}

Key observation:

Φk = log(Ψk)− log(νε)

where Ψk = ν(f(xk)− fmin) + (1− ν)αk ‖∇f(xk)‖2 + (1− ν)θδ2
k

Convergence rate, strongly convex (P-Scheinberg ’18)

If pgpf > 1/2 and pf sufficiently large,

E[Tε] ≤ O
(

log

(
1

ε

))
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Strongly convex case
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Preliminary results

min
θ

1

m

m∑
i=1

log(1 + exp(−yi(θTxi)) +
λ

2
‖θ‖22
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Open questions and extensions

Conclusions
General framework for convergence results
Convergence analysis (nonconvex, convex, and strongly convex) for a
line search algorithm with gradient descent.

Applications of the stochastic process
Line search, trust region methods (Blanchet, Cartis, Menickelly,
Scheinberg ’17), and cubic regularization?
Extensions into 2nd order stochastic methods with Hessian guarantees?

Open problems
Finding a good practical stochastic line search for machine learning;
sampling procedure too conservative
Extending line search procedure to stochastic Wolfe conditions (BFGS)
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