
c©Copyright 2017

Courtney Paquette

Structure and complexity in non-convex and non-smooth

optimization

Courtney Paquette

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2017

Reading Committee:

Dmitriy Drusvyatskiy, Chair

Jim Burke

John Sylvester

Program Authorized to Offer Degree:
Mathematics

University of Washington

Abstract

Structure and complexity in non-convex and non-smooth optimization

Courtney Paquette

Chair of the Supervisory Committee:
Assistant Professor Dmitriy Drusvyatskiy

Mathematics

Complexity theory drives much of modern optimization, allowing a fair comparison between

competing numerical methods. The subject broadly seeks to both develop efficient algorithms

and establish limitations on efficiencies of any algorithm for the problem class. Classical com-

plexity theory based on oracle models targets problems that are both smooth and convex.

Without smoothness, methods rely on exploiting the structure of the target function to im-

prove on the worst-case complexity of non-smooth convex optimization. This thesis explores

complexity of first-order methods for structured non-smooth and non-convex problems. A

central example is the minimization of a composition of a convex function with a smooth

map – the so-called convex-composite problem class. Nonlinear least squares formulations in

engineering and nonlinear model fitting in statistics fall within this framework. The thesis

develops new algorithms for the composite problem class, along with inertial variants that

are adaptive to convexity.

Acceleration is a widely used term in contemporary optimization. The term is often

used to describe methods with efficiency guarantees matching the best possible complexity

estimates for a given problem class. This thesis develops methods that interpolate between

convex and non-convex settings. In particular, we focus on minimizing large finite sum

problems, popular for modeling empirical risk in statistical applications, when the user is

unaware of the convexity of the objective function. The scheme we describe has convergence

guarantees that adapt to the underlying convexity of the objective function.

First-order algorithms for non-smooth problems depend on having access to generalized

derivatives of the objective function. We conclude the thesis with a fresh look at variational

properties of spectral function. These are the functions on the space of symmetric matrices

that depend on the matrix only through its eigenvalues. In particular, our analysis dramat-

ically simplifies currently available derivations of differential formulas of such functions.

TABLE OF CONTENTS

Page

List of Figures . iii

Chapter 1: Introduction . 1

1.1 Generalizing the derivative . 4

1.2 Oracle complexities . 8

1.3 A brief history of classical first-order methods 11

1.4 Inertial acceleration beyond convexity . 18

Chapter 2: Efficiency of minimizing compositions of convex functions and smooth
maps . 22

2.1 Introduction . 22

2.2 Notation . 28

2.3 The composite problem class . 30

2.4 Prox-gradient size ‖Gt‖ and approximate stationarity 37

2.5 Inexact analysis of the prox-linear method 43

2.6 Overall complexity for the composite problem class 51

2.7 Finite sum problems . 64

2.8 An accelerated prox-linear algorithm . 72

Chapter 3: 4WD-Catalyst Acceleration for Gradient-Based Non-Convex Optimization 83

3.1 Introduction . 83

3.2 Tools for nonconvex and nonsmooth optimization 86

3.3 The 4WD-Catalyst algorithm for non-convex optimization 88

3.4 The 4WD-Catalyst-Automatic algorithm . 94

3.5 Applications to Existing Algorithms . 104

3.6 Experiments . 108

i

Chapter 4: Variational analysis of spectral functions simplified 115

4.1 Introduction . 115

4.2 Notation . 118

4.3 Symmetry and orthogonal invariance . 121

4.4 Derivation of the subdifferential formula . 122

4.5 Hessians of C2-smooth spectral functions . 125

Appendix A: Appendix for Chapter 2 . 131

A.1 Proofs of Lemmas 2.5.3, 2.7.1 and Theorems 2.8.6, 2.8.7 131

A.2 Backtracking . 138

Appendix B: Appendix for Chapter 3 . 143

B.1 Convergence rates in strongly-convex composite minimization 143

B.2 Theoretical analysis of the basic algorithm 144

B.3 Analysis of 4WD-Catalyst-Automatic and Auto-adapt 147

B.4 Inner-loop complexity: proof of Theorem 3.4.4 151

Bibliography . 156

ii

LIST OF FIGURES

Figure Number Page

1.1 Depiction of proximal normal cones for a set C 5

1.2 Illustration of the upper and lower bounds of an α-convex, β-smooth function 11

1.3 Majorization view of gradient descent for β-smooth functions 13

1.4 Illustration of projected gradient descent . 17

1.5 Pseudocode for Nesterov’s accelerated gradient method in the non-strongly
convex case (α = 0) (left) and strongly convex case (right) 18

1.6 Illustration of Nesterov’s accelerated gradient descent for minx c(x). 19

3.1 Dictionary learning experiments using SVRG. We plot the function value (top)
and the subgradient norm (bottom). From left to right, we vary the size of
dataset from n = 1 000 to n = 100 000. 110

3.2 Dictionary learning experiments using SAGA. We plot the function value (top)
and the subgradient norm (bottom). From left to right, we vary the size of
dataset from n = 1 000 to n = 100 000. 111

3.3 Neural network experiments on subsets of dataset alpha. From left to right,
we vary the size of the dataset’s subset from n = 1 000 to n = 100 000. 112

3.4 Neural network experiments on subsets of datasets alpha (top) and covtype
(bottom). 112

3.5 We ran 50 iterations of 4WD-Catalyst-Automatic SVRG with different choices
of S on a two-layer neural network. The data is a subset of dataset covtype.
The x-axis is the number of gradient evaluations on the left, which is T + Sk
per iteration with T = 1; and the number of iterations on the right. 114

iii

ACKNOWLEDGMENTS

This thesis was largely written over a two month period in early 2017, starting

from previously completed collaborative work. Once I finally began writing it, I found

– much to my surprise – that the thesis almost wrote itself; the lessons and experiences

of the past five years at UW and before were enough to propel me through to the

finish.

Hart Smith taught my first real analysis course and subsequent topics courses in

PDE and harmonic analysis. I started with such a poor understanding of analysis-

my proofs being too imprecise. With his guidance and support, he taught me to

appreciate the details- to get my hands dirty with proofs, and value the “messiness”

of mathematics. Beyond his mathematical prowess, he has been a wonderful friend; I

will miss our walks around the UW campus.

Although I have only known Zaid Harchaoui for a year, he has become one of the

most supportive advisors in my academic life. Zaid has been my introduction to the

academic community, arranging for me to meet with new collaborates and present my

ideas at conferences. His encouragement and guidance has been unparalleled.

Jacob Richey has been a constant source of inspiration to me. I could not have

asked for a more welcoming and entertaining officemate. More than anyone I know,

he’s packed with incredible conjectures about the world that are instantaneously rec-

ognizable as his, and they inspire and impel me to more and greater things.

I met Jim Morrow in my senior year as an undergraduate. If it were not for him, I

would not be here getting my Ph.D. in mathematics. He has believed in me from the

iv

beginning, unlike no one else. He is a constant source of wisdom and energy, advising

me in a way that only he can.

Finally, I would be remiss if I didn’t thank Dima, my adviser. I’m pretty certain

there is nothing I can write here to adequately do justice to my relationship with

Dima. Dima suggested to me my first project, and that turned into a great odyssey.

I do not know if there is another person in the world who would come in on weekends

or stay late to work out complicated bounds on your whiteboard. I’m all the wiser

and all the smarter for having you as my advisor, and I would do it all again.

There are also people whose effect on me is profound and ineffable, but without

whom I could not be where I am today: my mother, my husband Elliot, and a long

list of friends here in Seattle and in places all around the world.

v

DEDICATION

To my family and friends.

vi

1

Chapter 1

INTRODUCTION

Optimization is ubiquitous in our society. Notable advances emerged during WWII, the

beginning of modern optimization, and these breakthroughs, such as the simplex method

for linear programming, sparked a movement in the field which continues to flourish today.

Modern optimization methods are routinely used in engineering, machine learning, and high

dimensional statistics. Continuous optimization, a major theme in this thesis, focuses on the

setting where the decision variables take values in Rn as opposed to a discrete set. Modern

applications of continuous optimization seek to extract conclusions from immense data with-

out sacrificing efficiency and accuracy to the minima – a formidable task for optimization

specialists. Under these circumstances, the high per-iteration cost of computing second-order

information (e.g. Hessian) is rendered forbidden. Instead, first-order methods, algorithms

which rely purely on gradient and function value information, have dominated large-scale

computing of late.

The simplest first-order method for minimizing a smooth function is the gradient-descent

scheme and its variants. This scheme dates back to Cauchy [22] and is still widely used to-

day, requiring at most O(ε−2) number of iterations to obtain an ε-stationary point – a point

satisfying ‖∇f(x)‖ ≤ ε. If the target function is also convex, then the iterates produced by

gradient descent converge to a global minimizer, and the above rate to stationarity automat-

ically improves to O(ε−1). Moreover, gradient descent ensures f(x)− inf f ≤ ε after at most

O(ε−1) iterations. Naturally, one may question whether, for this function class, gradient

descent gives the best possible convergence rate. Aiming to address questions of this type,

Nemirovski and Yudin [78] developed a comprehensive complexity theory for convex mini-

mization based on worst-case oracle models. The theory provides lower complexity bounds

2

which stipulate that any “algorithm” needs at least a certain amount of “information” about

the objective function to find an approximate solution; methods achieving such best possible

efficiency estimates are called optimal for the problem class. In the early 1980’s, Nesterov

[81, 82] gave the first true first-order optimal algorithm for smooth convex minimization.

The latter algorithm, known as Nesterov’s accelerated gradient method, is one of today’s

most influential schemes for smooth optimization and achieves a complexity guarantee of

O(ε−1/2) in function sub-optimality.

Many large-scale applications require minimizing a sum of a smooth function and a

“simple” convex function. Problems of this type are known in the literature as additive

composite minimization. This, in essence, is the easiest type of non-smooth optimization

problem for first-order methods. In particular, gradient descent and its accelerated variants

(when the smooth function is also convex) naturally extend to this setting, with analogous

complexity guarantees [4, 86]. Over the past five years, the additive composite class has been

refined to a large finite sum-structure: minx
1
m

∑m
i=1 ci(x) + g(x), where ci(x) are smooth

and g(x) is simple and convex. This type of optimization problem naturally arises when

modelling empirical risk in statistical applications. The evaluation of the gradient of the sum

1
n

∑m
i=1 ci(x) can not be viewed as a single unit of cost, but requires a pass through all the

individual functions ci. Methods, stochastic perhaps, that require fewer gradient evaluations

of the individual functions ci might be superior. Notable examples include stochastic gradient

and dual averaging [84, 118] and incremental algorithms [34, 55, 99]. Settings where the ci

are non-convex, in particular, have been gaining much interest, in large part motivated by

robust fidelity measures and deep learning. Chapter 3 is devoted to tackling the large non-

convex finite-sum problem, developing a first-order “inertial meta-algorithm”: a procedure

for taking methods originally designed for the convex finite-sum problems and extending

them so that they apply when the objective is non-convex.

More powerful modelling frameworks require a more sophisticated class of non-smooth

and non-convex optimization problems than those that are additive composite. Much of

the thesis (Chapter 2) concerns the composite problem class: minx h(c(x)) + g(x), where h

3

is finite-valued and convex, g is merely convex, and c is a smooth map. This formulation

encompasses a wide variety of applications, including nonlinear least squares in engineering,

exact penalty formulations in nonlinear programming, nonlinear models in statistics, non-

linear Kalman filters, etc. The problem in question is both non-smooth and non-convex.

Our work in this area is devoted to understanding the behavior of “critical points” of the

composite problem class through the rich language of variational analysis [98] and developing

numerical methods with provable efficiency guarantees. In particular, we show that there is

a first-order method for this problem class that achieves the efficiency estimate Õ(ε−3) in an

appropriate stationarity measure generalizing the gradient. Along the way, we explore the

meaning of “accelerating” a first-order method for non-convex problems.

In concrete non-smooth and non-convex optimization problems, such as the convex com-

posite problem class above, numerical methods rely on having access to generalized deriva-

tives of the objective function. Chapter 4 in the thesis revisits this computation for the wide

class of spectral functions; these are functions on the space of symmetric matrices that de-

pend on the matrices only through their eigenvalues. The spectral norm and the k′th largest

eigenvalue are good examples.

The organization of the thesis is as follows. The rest of Chapter 1 is devoted to a more

detailed discussion of the background material. Chapter 2 discusses the convex composite

problem class, focusing on efficient first-order methods and “acceleration”. Chapter 3 con-

siders the idea of inertial acceleration more broadly, developing a generic inertial acceleration

scheme for minimizing non-convex finite-sum problems. The final Chapter 4 revisits non-

smooth behavior of eigenvalue functions, drastically simplifying previously available analysis.

Throughout, the thesis emphasizes the interplay between complexity, conditioning, and use

of structure in non-smooth optimization. The main chapters 2, 3, and 4 of the thesis contain

material from the papers:

• D. Drusvyatskiy and C. Paquette. Efficiency of minimizing compositions of convex

functions and smooth maps. Preprint arXiv:1605.00125, 2016

4

• C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui. Catalyst accelera-

tion for gradient-based non-convex optimization. Preprint arXiv:1703.10993, 2017

• D. Drusvyatskiy and C. Paquette. Variational analysis of spectral functions simplified.

Journal of Convex Analysis (to appear), 2016

1.1 Generalizing the derivative

Variational analysis generalizes the concepts of differential analysis to functions that are

not differentiable. Much analysis of smooth functions relies on linear and quadratic ap-

proximation arising from derivatives; so it is natural to extend these notions to non-smooth

functions as well. A principle goal of non-smooth optimization is the search for critical points

of non-smooth functions, or points where the “derivative” is zero.

Throughout the rest of this thesis, we consider functions defined on a Euclidean space,

denoted by Rn, with an induced inner product 〈·, ·〉. As motivation, we begin with the

classical and familiar Gâteaux derivative for a function f : Rn → R at x, namely a linear

functional f ′(x) satisfying

lim
t→0

f(x+ tv)− f(x)

t
− 〈f ′(x), v〉 = 0.

This traditional definition introduces the derivative through pairs of points lying in the graph

of the function. In optimization, we are interested in one-sided limits; therefore it is more

instructive to consider the geometry of the epigraph – the set of points lying above the graph.

Fix a point c̄ in a subset C ⊂ Rn and consider all the points x whose projection onto C is c̄.

The set of vectors x− c̄ and their non-negative multiples forms the proximal normal cone to

the set C at c̄, and is denoted by NP
C (c̄). This is illustrated in Figure 1.1.

There is a natural extension of the normal cone of a set to functions f : Rn → R ∪ {∞}

by considering the function’s epigraph,

epi(f) = {(x, r) ∈ Rn × R : f(x) ≤ r}.

5

Set C

Normal cone

c3

c2

Normal cone

c1

Figure 1.1: Depiction of proximal normal cones for a set C

This yields a “geometric” interpretation of a gradient. Suppose f : Rn → R ∪ {∞} is a

lower-semicontinuous function and x lies in dom(f). The proximal subdifferential, denoted

by ∂Pf(x), is the set of all vectors v such that (v,−1) ∈ Nepi(f)(x) and any element v of

the proximal subdifferential is called a proximal subgradient. For example, the proximal

subdifferential for the function f(x) = |x| at x = 0 is ∂Pf(0) = [−1, 1]. An equivalent

definition emulates the notion of local quadratic support for a function: a vector v lies in

∂Pf(x) whenever there exist σ, η > 0 such that

f(y) ≥ f(x) + 〈v, y − x〉 − σ ‖y − x‖2 for all y ∈ B(x, η)

where B(x, η) denotes the ball centered at x with radius η.

A noted difference between the classical derivative and the proximal subdifferential is

that it is not unique and may not exist for some points in the dom(f) as seen in the example

f(x) = −|x| at x = 0. When the function is C2-smooth, the proximal subdifferential is

unique and agrees with the classical Gâteaux derivative. Additional characterizations can

be found in [98, Theorem 8.46].

An important deficit of the proximal subdifferential is that nearby subgradients can

behave wildly differently. Since continuity of the derivative is generally desired in analysis,

6

the analogous statement leads to the definition of the limiting subdifferential, denoted by

∂f(x). A subgradient v is in the limiting subdifferential ∂f(x) if there exist sequences xi

and vi ∈ ∂Pf(xi) satisfying (xi, f(xi), vi)→ (x, f(x), v).

A main factor for constructing the theory of subdifferentials grew from the necessity to

optimize non-smooth functions. However, guarantees of convergence to global minima require

additional restrictions on the function class, namely convexity. A function f : C → R∪{∞}

is convex if the set C is convex and for any x, y ∈ C and λ ∈ [0, 1], it holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

For convex functions all the definitions of subdifferentials agree (see [9, Theorem 6.2.2],

[24]) and in this case, we simply say the subdifferential of f and denote it by ∂f(x). In

particular, the subdifferential of a convex function reduces to

∂f(x) = {v : f(y) ≥ f(x) + 〈v, y − x〉}.

This lower linear approximation of the function drives complexity bounds for many opti-

mization algorithms.

The role of convex functions in optimization is paramount. Convex functions naturally

possess a local to global behavior. For a general C1-smooth function, the linear approximation

via the gradient only contains local behavior of the function, but with convex functions this

linear approximation is a global lower bound. In particular, for convex functions, local

minima are global minima:

Proposition 1.1.1 (Local minima are global minima). Suppose f is a convex function.

Then the following are equivalent:

(1) the point x∗ is a local minima,

(2) the point x∗ is a global minima,

(3) 0 ∈ ∂f(x∗).

From a numerical perspective, convexity improves convergence rates for algorithms.

7

1.1.1 Spectral Functions

A principle goal of non-smooth optimization is to find a “critical” point of a target function.

A point x is critical (or stationary) for a function f if the inclusion 0 ∈ ∂f(x) holds; thus

being able to compute the subdifferential of a function f is crucial. In Chapter 4, we explore

functions defined on the space of symmetric n× n matrices that are orthogonally invariant

i.e.

F (UXUT) = F (X) for all U orthogonal.

These functions are often called spectral because they only depend on the matrix through

its eigenvalues. Spectral functions naturally arise in the sciences and nowadays they appear

throughout optimization and matrix analysis.

Each spectral function decomposes as F (X) = (f ◦ λ)(X), where λ maps to an ordered

list of eigenvalues and f is symmetric (i.e. f is invariant under permutation of coordinates).

Due to this correspondence with f , it is often easier to work directly with the symmetric

function. Here are some common examples of symmetric and spectral functions:

• The nuclear norm F (X) = ‖X‖∗ where f(x) = ‖x‖1

• F (X) = det(X) and f(x) =
∏n

i=1 xi

• The Frobenius norm F (X) = ‖X‖F and f(x) = ‖x‖2

A natural question arises: what properties do f and F share? Does differentiability of one

imply differentiability of the other?, how about convexity?, or even analyticity? Surprisingly

the answer to these questions is yes. Indeed, often more can be said about the explicit

relationship. Common proofs stem from the well-known trace-inequality [9, Theorem 1.2.1]:

〈λ(X), λ(Y)〉 ≥ 〈X, Y 〉

with equality if and only if X and Y admit a simultaneous ordered spectral decomposition:

there exists an orthogonal matrix U such that

UXUT = λ(X) and UY UT = λ(Y).

8

The trace inequality yields the elegant relation F ∗ = f ∗ ◦ λ where F ∗ and f ∗ are the convex

conjugates of F and f , respectively. This equality, in turn, yields the simple representation

of the subdifferential of convex functions [60]:

∂PF (X) =
{
UDiag(v)UT : U is orthogonal with UDiag(λ(X))UT = X

and v ∈ ∂Pf(λ(X))
}
.

(1.1)

Similar results hold for the Fréchet, limiting, and Clarke subdifferentials. The formula pro-

vides a concise way of computing the subdifferentials of non-smooth matrix-valued functions.

Example 1.1.1 (The proximal subdifferential of the nuclear norm). A quick check shows

(∂P ‖x‖1)j =

sign(xj), if |xj| 6= 0

[−1, 1], otherwise

and thus if [U+, U0, U−]Diag(λ(X))[U+, U0, U−]T = X is an orthogonal decomposition of X,

then

∂P ‖X‖∗ =

{
[U+, U0, U−]

I 0 0

0 W 0

0 0 −I

 [U+, U0, U−] : ‖W‖2 ≤ 1

}

[112, Example 2].

The content of Chapter 4 is twofold: (1) we show a much simpler proof of (1.1) for

non-convex spectral functions and (2) we provide a geometric argument for computing the

Hessian by designing special curves on the epigraph of the C2-smooth spectral function.

1.2 Oracle complexities

In the next few sections, we will describe several algorithms for solving the problem

min
x

f(x).

For this, we want to compare algorithms to each other; in other words we are looking for a

metric with which we can say that some algorithm is “better” than the other. For the rest of

9

this thesis, we will use the classical black-box model ; this model assumes that we can access

information about the function f via queries to oracles. A typical classification of the oracle

is based on the order of the derivative output:

• a zeroth-order oracle takes in a point x ∈ Rn and outputs the value f(x)

• a first-order oracle takes in a point x ∈ Rn and outputs both the value of the function

f at x and the gradient of the function at x

• a second-order oracle takes in a point x ∈ Rn and outputs f(x), the gradient ∇f(x),

and the Hessian ∇2f(x).

For our purposes, we focus on first-order oracles. Such oracles naturally fit problems

arising in machine learning when the dimension of Rn is large; thus making computation of

the Hessians impractical. Our main interests are in the oracle complexity, that is how many

queries to the oracle are necessary and sufficient to obtain an ε-approximate minima to a

convex function. For this, we need both an upper and lower bound; the upper bound comes

from constructing a specific algorithm and the lower bound from devising a clever function

(or a sequence) and arguing if the number of queries to the oracle is “too small” no algorithm

has enough information about the function to know whether an ε-approximate minima has

been reached. The black box model was developed in the early days of convex optimization

by pioneers Nemirovski and Yudin [78].

Classifying the objective function When comparing complexities of algorithms, we

jointly consider the oracle and the class of functions we are minimizing. Two standard

assumptions regarding the objective function f are β-smoothness and strong convexity. We

discuss each in detail.

Definition 1.2.1 (β-smoothness). A continuously differentiable f : Rn → R ∪ {∞} is β-

smooth if the gradient ∇f(x) is Lipschitz with constant β, that is

‖∇f(x)−∇f(y)‖ ≤ β ‖x− y‖ .

10

Typical algorithms use simple “models” of the objective function as proxies. The β-

smoothness condition provides a global quadratic majorization model:

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖x− y‖2 , for all x, y ∈ Rn. (1.2)

The quadratic model is a simpler object to work with. For instance, by minimizing this

quadratic, we directly recover the gradient descent algorithm. For a C2-smooth function,

the β-smoothness reduces to a statement about the Hessian, βI � ∇2f(x) � −βI.

We now discuss another property of the original minimizing function which can signifi-

cantly speed up convergence, known as strong convexity.

Definition 1.2.2 (α-strongly convex). A function f : Rn → R ∪ {∞} is α-strongly convex

(α ≥ 0) if it satisfies the subgradient inequality:

f(y) ≥ f(x) + 〈v, y − x〉+
α

2
‖y − x‖2 , for all x, y ∈ Rn and v ∈ ∂f(x). (1.3)

Notice when the α = 0, this condition reduces to convexity; so strong convexity strength-

ens convexity. Parsing Definition 1.2.2, strong convexity says the original function f is lower

bounded by a convex quadratic function. We think of the constant α as a measure of the cur-

vature of the function; large curvature (α > 0) guarantees that f has a minimizer on Rn. It

is immediate to verify that a function f is α-strongly convex if and only if x 7→ f(x)− α
2
‖x‖2

is convex (in particular, if f is C2-smooth and α-convex, then ∇2f(x) � αI).

Significant improvements in oracle complexities occur when both the minimizing function

has smoothness and strong convexity properties. In particular, the addition of a strong

convexity assumption changes the rate of convergence from sublinear (here we assume β-

smoothness) to linear rate of convergence (exponential decay).

1.2.1 Measuring oracle complexities

We have intuitively defined oracle complexities as the number of calls to the oracle to obtain

ε-approximate minima; but what does an ε-approximate minima mean? Generally, there are

11

β-smooth
upper bound

(1.2)

f(x)

α-convex
lower bound

(1.3)

Figure 1.2: Illustration of the upper and lower bounds of an α-convex, β-smooth function

three distinct notions: (1) f(x) − inf f < ε (function values), (2) ‖x− x∗‖2 < ε (iterates),

and (3) dist(0, ∂f(x)) < ε (subgradients). When the minimizing function is non-convex and

we use a first-order oracle, then we expect a first-order algorithm to output a point with a

small subgradient. When the function is both strongly convex and β-smooth, complexities

with respect to all three measures are all equivalent.

1.3 A brief history of classical first-order methods

Since Chapter 2 and Chapter 3 compare our newly designed algorithms with previous results,

we begin by summarizing some of standard methods. Consider the unconstrained problem

min
x

f(x) (1.4)

12

where f : Rn → R is a β-smooth function. Let us begin with the gradient-descent scheme

and its variants. This iterative scheme dates back to Cauchy [22] and is perhaps the simplest

strategy for minimizing a differentiable function f on Rn. Starting at some initial point x0,

the scheme iterates

xt+1 = xt − η∇f(xt). (1.5)

The derivation of gradient descent update rule comes from minimizing the quadratic upper

bound (1.2). From this majorization viewpoint, it is clear that gradient descent produces

iterates with decreasing function values (see Figure 1.3). The value of η, also known as the

step length, controls how far to move in the negative gradient direction (here η = 1/β). To

obtain an ε-stationary point, the gradient descent scheme (1.5) requires at most O(β(f(x0)−

f ∗)/ε2) iterations [81].1 By setting η = 1/β, a convex and β-smooth objective function

requires O(β ‖x0 − x∗‖2 /ε) number of iterations to achieve a ε-optimal solution (see [12,

Theorem 3.3] or [81, Corollary 2.12]). By assuming a stronger condition, namely α-convexity,

the convergence rate becomes linear, ‖xt − x∗‖2 ≤ (1− α
β
)t ‖x0 − x∗‖; see e.g. [81, Theorem

2.1.15].

As we expect, non-smoothness of the minimizing function significantly impacts the con-

vergence guarantees. To see this, we assume the function f is convex and L-Lipschitz

(‖f(x)− f(y)‖ ≤ L ‖x− y‖ for all x, y) but not β-smooth. In this context, we make a

modification to the basic gradient descent (1.5):

xt+1 = xt − ηvt, where vt ∈ ∂f(xt).

Known in the literature as the subgradient descent algorithm, this method with η = ‖x0−x∗‖
L
√
t

requires Õ(‖x0 − x∗‖2 L2/ε2) number of calls to the oracle to achieve an ε-optimal point

(small function values) [12, Theorem 3.2].

As illustrated above, the effects of convexity and smoothness on the convergence rates is

astonishing. On the one hand, the gradient descent method is the workhorse of first-order

1The big O notation hides only problem independent constants and f∗ = limt→∞ f(xt).

13

Upper bound (1.2)

f(x)

xt
Current
Iterate

xt+1

New
Iterate

Figure 1.3: Majorization view of gradient descent for β-smooth functions

optimization and it produces guarantees independent of the dimension of the space under

various assumptions on the minimizing function. On the other hand, it emphasizes the

importance of convexity and smoothness with number of oracle calls ranging from sublinear

rates O(1/ε2) and O(1/ε) to linear rates O(β
α

log(1/ε)).

1.3.1 An interlude into first-order oracle lower bounds

At this point, one may be wondering if gradient descent gives the best convergence guar-

antees for a first-order oracle for smooth minimization. As mentioned in Section 1.2, the

oracle complexity is governed by both an upper and lower bound. So far, we have only

discussed possible upper bounds arising from gradient descent. Let us discuss lower-bounds.

These results originally appeared in Nemirovski and Yudin [78] and later a simplified version

appeared in Nesterov [81].

One way to think about a black box algorithm is that it has available a “history” of the

points and gradients that have been generated so far and it outputs a new point based only

on this information, which will be fed into the first-order oracle. Therefore, let us make the

14

following simplifying assumption on the iterate sequence:

xt+1 ∈ x0 + Span{v0, v1, . . . , vt}, (1.6)

with vi ∈ ∂f(xi) for each index i. Under this assumption, we obtain three lower bounds:

Theorem 1.3.1 (Lower bounds on the first-order oracles). Assume the black box procedure

satisfies (1.6) . Then we have the following three lower bounds:

(1) (Convex and Non-smooth) Let t ≤ n and R any positive real constant. There exists a

convex and L-Lipschitz function f such that

min
1≤s≤t

f(xs)− min
x∈B(0,R)

2
f(x) ≥ RL

2(1 +
√
t)
.

(2) (Convex and smooth) Let t ≤ (n− 1)/2, β > 0. There exists a β-smooth convex function

f such that

min
1≤s≤t

f(xs)− f(x∗) ≥ 3β

32

‖x1 − x∗‖2

(t+ 1)2
.

(3) (Strongly Convex and Smooth) There exists a β-smooth and α-strongly convex function

f such that for any t ≥ 1 one has

f(xt)− f(x∗) ≥ α

2

(√
κ− 1√
κ+ 1

)2(t−1)

‖x1 − x∗‖2 , where κ = β/α.

The proof of these statements can be found in [12, Theorem 3.13, Theorem 3.14, Theorem

3.15] and [81, Theorem 2.1.7].

Observe the gap in the upper and lower-complexity bounds for smooth convex mini-

mization: gradient descent achieves the efficiency estimate O(1/ε) (and O(β
α

log(1/ε)) in

the strongly convex case) while the lower bounds suggest complexities of O(1/
√
ε) (and

O(
√

β
α

log(1/ε) in the strongly convex case). Historically, the first method matching optimal

oracle complexity was inspired by the conjugate gradient algorithm for solving systems of

equations [78]. Nesterov, in the 1980s, introduced the first true first-order optimal algorithm

15

[81, 82]. The latter algorithm, known as Nesterov’ accelerated gradient method is one of to-

day’s most influential algorithms for smooth optimization. Following this, there have been a

slew of optimal methods. However, one open result remains: as far as we are aware, no lower

bound on the complexity exists for minimizing smooth non-convex functions. The gradient

descent rate of O(1/ε2) is the “best” currently available rate.

of Iterations

Method
convergence

guarantee

non-convex,

β-smooth

convex,

β-smooth

α-convex,

β-smooth
cost/iter

(Prox) Gradient
ε-stationary O

(β
ε2

)
O
(β
ε

)
O
(β
α log(1

ε)
)

1 ∇c(x)

ε-optimal x O
(β
ε

)
O
(β
α log(1

ε)
)

1 ∇c(x)

Accelerated
ε-stationary x O

(β2/3

ε2/3

)
O
(√β

α log(1
ε)
)

1 ∇c(x)

ε-optimal x O
(√β

ε

)
O
(√β

α log(1
ε)
)

1 ∇c(x)

Stochastic3
ε-stationary x x O

((
m+ β

α

)
log(1

ε)
)

1 ∇ci(x)

ε-optimal x O
(m+β

ε

)
4 O

((
m+ β

α

)
log(1

ε)
)

5 1 ∇ci(x)

Table 1.1: Convergence rates for first-order methods

1.3.2 Additive Composite Functions

A striking difference in complexities exists due to non-smoothness in the blackbox model. In

the absence of smoothness, we use the structure of the objective function to provide better

3The function f(x) = 1
m

∑m
i=1 ci(x) + g(x)

4The convergence rate is stated for SAGA. [34]

5The rate is stated for SVRG. [55]

16

rates of convergence for these non-smooth problems. A well-studied structured optimization

problem known as additive composite minimization, or simply composite functions, in the

literature is formulated as

min
x

f(x) = c(x) + g(x). (1.7)

The convergence analysis has been well-studied in the literature under various contexts and

assumptions on the functions c and g (see [4, 81, 82, 109]). Usual formulations assume the

functions c(x) and g(x) are convex and c(x) is β-smooth. The methods in Chapter 2 and

Chapter 3 use many of the ideas developed for this problem class; as such we provide a brief

survey of suboptimal and optimal methods for solving (1.7).

Algorithms for additive composite minimization A common approach for solving

(1.7) are the proximal gradient methods (see [96]). To motivate this algorithm, consider

a constrained optimization problem: minimizing a β-smooth, convex function c(x) over a

closed convex set C (take g(x) in (1.7) to be the indicator of the set C). Imitating the

gradient descent algorithm (1.5), we take the gradient-step as before, however the new point

may be infeasible so we rectify this by projecting back onto to the set C:

xk+1 = ProjC(xk − 1
β
∇c(xk)) = argmin

x∈C

1

2

∥∥∥x− (xk − 1
β
∇c(xk))

∥∥∥2

.

When the function g is a general convex function, we replace the projection operation with

the proximal mapping :

proxtg(w) = argmin
x

{
g(x) +

1

2t
‖x− w‖2

}
. (1.8)

When this subproblem is inexpensive, the prox-gradient algorithm is simply

xk+1 = proxtg(xk − 1
β
∇c(xk)). (1.9)

The proximal gradient method enjoys oracle complexity similar to gradient descent: O(ε−1)

for an ε-optimal solution when f is convex and O(ε−2) for an ε-stationary solution when c

is β-smooth but not convex.

17

Rn

xt

xt+1grad. step

proj. step

Figure 1.4: Illustration of projected gradient descent

The optimal method introduced by Nesterov adaptes to the additive composite mini-

mization problem when the function c(x) is convex (See Figure 1.3.2 and Figure 1.3.2). The

variant, discovered by Beck and Tebulle [4], achieves the same optimal rates as the smooth

cases (O(
√
β/ε) and O(

√
β/α log(1/ε)) in the convex and α-convex cases, respectively).

Incremental Methods In machine learning applications, structured optimization prob-

lems often take the form:

min
x
f(x) :=

1

m

m∑
i=1

ci(x) + g(x). (1.10)

where the functions ci are convex and β-smooth, the function g(x) is known as the regu-

larizer, and m is large. Computing a full gradient of (1.10) when m is large is expensive;

however by introducing randomness, convergence rates are retained on average. These meth-

ods are known as stochastic. The simplest stochastic method is stochastic gradient descent

(SGD). We replace at each step the full gradient in the prox-gradient method (1.9) with a

uniformly chosen gradient ∇cik(x) where ik ∈ [n]. Using a decreasing step-size η, on average

an ε-approximate optimal solution requires O(1/ε2) iterations when the minimizing function

is convex and O(1/(αε)) iterations when the function is α-strongly convex (See Table 1.1 for

18

Input: Choose x0 ∈ dom f and a0 ∈ (0, 1).

Initialization: y0 = x0

Step k (k = 1, 2, . . .)

1. (Proximal Step) Find xk such that

xk = proxβ−1g

(
yk − 1

β∇c(yk)
)
.

2. Choose ak+1 ∈ (0, 1) satisfying

a2
k+1 = a2

k(1− ak+1).

and set bk = ak(1−ak)
a2k+ak+1

.

3. (Momentum Step) Update

yk+1 = xk+1 + bk(xk+1 − xk).

Input: Choose x0 ∈ dom f and a0 ∈
[√

α
β , 1
)

Initialization: y0 = x0 and q = α
β

Step k (k = 1, 2, . . .)

1. (Proximal Step) Find xk such that

xk+1 = proxβ−1g

(
yk − 1

β∇c(yk)
)
.

2. Compute ak+1 ∈ (0, 1) from the equation

a2
k+1 = (1− ak+1)a2

k + q · ak+1

and set bk = ak(1−ak)
a2k+ak+1

.

3. (Momentum Step) Update

yk+1 = xk+1 + bk(xk+1 − xk).

Figure 1.5: Pseudocode for Nesterov’s accelerated gradient method in the non-strongly con-

vex case (α = 0) (left) and strongly convex case (right)

comparison with full gradient computations). So-called incremental methods achieve faster

rates, and include SAG (Stochastic Averaged Gradient), SAGA, SDCA (Stochastic Dual Co-

ordinate Ascent), and SVRG (Stochastic Variance Reduced Gradient descent). Incremental

methods require O((m+ β/α) log(1/ε)) gradient computations when f is α-strongly convex

to achieve ε accuracy [34, 55, 99, 103]. We describe SVRG in Algorithm 1.

1.4 Inertial acceleration beyond convexity

A major part of the thesis concerns the idea of “acceleration”. The term, acceleration, ap-

plies to first-order methods whose efficiency guarantees match the optimal lower complexity

estimates within the problem class. A goal of this thesis is to extend this notion of “accel-

eration” to bridge between convex and non-convex settings. We desire a single first-order

19

xk yk

xk+1 yk+1

xk+2

yk+2

− 1
β
∇c(yk)

− 1
β
∇c(yk+1)

Figure 1.6: Illustration of Nesterov’s accelerated gradient descent for minx c(x).

method that achieves best known rates for convex and non-convex problems simultaneously.

In particular, we focus on when the user is unaware of the convexity of the objective. The

idea stems from the works of Ghadimi and Lan [48].

In Chapter 2, we explore a variety of algorithms for optimizing a class of functions called

convex composite functions, and having the form h(c(x)) + g(x), where h is Lipschitz and

convex, c is smooth, and g is simply convex. When h is the identity, this problem reduces to

the additive composite minimization problem (see 1.3.2). The composition structure allows

us to construct algorithms for these minimization problems. Using the prox-gradient method

as our model, the prox-linear method iterates:

xk+1 = argmin
x

{
h
(
c(xk) +∇c(xk)(x− xk)

)
+ g(x) +

1

2t
‖x− xk‖2

}
. (1.11)

By combining this result with Nesterov’s accelerated method, we construct a single “accel-

erated” method that is adaptive to underlying convexity of the problem. In Chapter 3, we

return to the finite-sum problem (1.10), but now assume the functions ci are non-convex.

20

Algorithm 1: SVRG

input: Fix point y(1) ∈ Rn.

repeat for s = 1, 2, . . .

1. initialization: Set x
(s)
1 = y(s)

2. repeat for t = 1, . . . , k

(a) Choose i
(s)
t uniformly at random from [m]

(b) Compute

x
(s)
t+1 = x

(s)
t − η

(
∇f

i
(s)
t

(x
(s)
t)−∇f

i
(s)
t

(y(s)) +∇f(y(s))
)

3. SetT

y(s+1) =
1

k

k∑
t=1

x
(s)
t .

Under this new setting, we also construct a generic “accelerated” method.

Both Chapters 2 and 3 rely on minimizing a wide class of non-convex functions, that are

convex up to a perturbation. This function class is called weakly-convex.

Definition 1.4.1 (Weak convexity). A function f : Rp → R∪{∞} is ρ−weakly convex if for

any points x, y ∈ Rp and λ ∈ [0, 1], the approximate secant inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ρλ(1− λ) ‖x− y‖2 .

First, notice that a ρ-weakly convex function with ρ equal to 0 is simply convex. Alter-

natively, easy algebraic manipulations show that a function is ρ-weakly convex if and only

if x 7→ f(x) + ρ
2
‖x‖2 is convex. In particular, a C1-smooth function f is ρ-weakly convex if

the gradient ∇f is ρ-Lipschitz, while a C2-smooth function f is ρ-weakly convex if and only

21

if ∇2f(x) � −ρI for all x. In this sense the constant ρ is a measure of convexity; a function

behaves more like a convex function when ρ is small.

Example 1.4.1 (Sum of ρ-weakly convex functions). Consider an additive composite mini-

mization problem

min
x

f(x) :=
1

n

n∑
i=1

fi(x) + g(x),

where fi : Rp → R ∪ {∞} are ρi-weakly convex and g : Rp → R ∪ {∞} is ρ-weakly convex.

In typical applications, the first summand measures fidelity of the predicted response to

observed data (e.g. penalty on misfit, log-likelihood) and g is a structure inducing regularizer

on the covariates x. From the very definition of weak convexity, it is clear that f is (ρ +∑n
i=1 ρi/n)-weakly convex. Departure from true convexity is common, since the loss functions

fi can easily be non-convex but smooth with Lipschitz continuous gradients. Similarly, it is

common to use non-convex (in fact, concave) regularizers g to induce sparsity for example.

Example 1.4.2 (Fully composite problems). Another rich class of problems that are weakly

convex consists of fully composite models

min
x

f(x) :=
1

n

n∑
i=1

hi(ci(x)) + g(x)

where hi : Rq → R are Li-Lipschitz and convex, ci : Rp → Rqi are C1-smooth with ρi-Lipschitz

Jacobian ∇ci, and g : Rp → R∪{∞} is ρ-weakly convex. Then f is (ρ+
∑n

i=1 Liρi/n)-weakly

convex (Lemma 4.4 in [39]).

Weakly convex functions have appeared in a wide variety of contexts, and under differ-

ent names. Some notable examples are globally lower-C2 [97], prox-regular [91], proximally

smooth functions [25], and those functions whose epigraph has positive reach [45]. In Chap-

ter 2, we explore the complexity of minimizing convex composite problems, while in Chap-

ter 3, we describe a generic schema for “accelerating” existing algorithms for weakly-convex

finite sum problems.

At the beginning of each chapter, we outline a precise description of the work done.

22

Chapter 2

EFFICIENCY OF MINIMIZING COMPOSITIONS OF
CONVEX FUNCTIONS AND SMOOTH MAPS

Joint work with D. Drusvyatskiy [39]

Abstract. We consider global efficiency of algorithms for minimizing a sum of a convex

function and a composition of a Lipschitz convex function with a smooth map. The basic

algorithm we rely on is the prox-linear method, which in each iteration solves a regularized

subproblem formed by linearizing the smooth map. When the subproblems are solved exactly,

the method has efficiencyO(ε−2), akin to gradient descent for smooth minimization. We show

that when the subproblems can only be solved by first-order methods, a simple combination

of smoothing, the prox-linear method, and a fast-gradient scheme yields an algorithm with

complexity Õ(ε−3). The technique readily extends to minimizing an average of m composite

functions, with complexity Õ(m/ε2 +
√
m/ε3) in expectation. We round off the paper with

an inertial prox-linear method that automatically accelerates in presence of convexity.

2.1 Introduction

In this work, we consider the class of composite optimization problems

min
x

F (x) := g(x) + h(c(x)), (2.1)

where g : Rd → R ∪ {∞} and h : Rm → R are closed convex functions and c : Rd → Rm is a

smooth map. Classical examples include regularized nonlinear least squares [87, Section 10.3]

and exact penalty formulations of nonlinear programs [87, Section 17.2], while notable con-

temporary instances include robust phase retrieval [41, 42] and matrix factorization problems

such as NMF [50]. The setting where c maps to the real line and h is the identity function,

23

namely

min
x

c(x) + g(x), (2.2)

is now commonplace in large-scale optimization. In this work, we use the term additive

composite minimization for (2.2) to distinguish it from the more general composite class

(2.1).

The most basic first-order method for additive composite minimization is the prox-

gradient algorithm, investigated by Beck-Teboulle [4] and Nesterov [86, Section 3]. Similarly,

much of the current paper will center around the prox-linear method – a direct extension of

the prox-gradient algorithm to the entire problem class (2.1). In each iteration, the prox-

linear method linearizes the smooth map c(·) and solves the proximal subproblem:

xk+1 = argmin
x

{
g(x) + h

(
c(xk) +∇c(xk)(x− xk)

)
+ 1

2t
‖x− xk‖2

}
, (2.3)

for an appropriately chosen parameter t > 0. The underlying assumption here is that

the strongly convex proximal subproblems (2.3) can be solved efficiently. This is indeed

reasonable in some circumstances. For example, one may have available specialized methods

for the proximal subproblems, or interior-point points methods may be available for moderate

dimensions d and m, or it may be that case that computing an accurate estimate of ∇c(x)

may already be the bottleneck (see e.g. Example 2.3.5). The prox-linear method was recently

investigated in [20, 38, 66, 83], though the ideas behind the algorithm and of its trust-region

variants are much older [13, 20, 46, 92, 93, 115, 117]. The scheme (2.3) reduces to the

popular prox-gradient algorithm for additive composite minimization, while for nonlinear

least squares, the algorithm is closely related to the Gauss-Newton algorithm [87, Section

10].

Our work focuses on global efficiency estimates of numerical methods. Therefore, in

line with standard assumptions in the literature, we assume that h is L-Lipschitz and the

Jacobian map ∇c is β-Lipschitz. As in the analysis of the prox-gradient method in Nesterov

[81, 82], it is convenient to measure the progress of the prox-linear method in terms of the

24

scaled step-sizes, called the prox-gradients:

Gt(xk) := t−1(xk − xk+1).

A short argument shows that with the optimal choice t = (Lβ)−1, the prox-linear algorithm

will find a point x satisfying ‖G 1
Lβ

(x)‖ ≤ ε after at most O(Lβ
ε2

(F (x0) − inf F)) iterations;

see e.g. [20, 38]. We mention in passing that iterate convergence under the K L-inequality

was recently shown in [8, 90], while local linear/quadratic rates under appropriate regularity

conditions were proved in [16, 38, 83]. The contributions of our work are as follows.

1. (Prox-gradient and the Moreau envelope) The size of the prox-gradient ‖Gt(xk)‖

plays a basic role in this work. In particular, all convergence rates are stated in terms of

this quantity. Consequently, it is important to understand precisely what this quantity

entails about the quality of the point xk (or xk+1). For additive composite prob-

lems (2.2), the situation is clear. Indeed, the proximal gradient method generates

iterates satisfying F ′(xk+1;u) ≥ −2‖G 1
β
(xk)‖ for all unit vectors u, where F ′(x;u) is

the directional derivative of F at x in direction u [86, Corollary 1]. Therefore, a small

prox-gradient ‖G 1
β
(xk)‖ guarantees that xk+1 is nearly stationary for the problem, since

the derivative of F at xk+1 in any unit direction is nearly nonnegative. For the gen-

eral composite class (2.1), such a conclusion is decisively false. Case in point, the

prox-linear method can generate an iterate sequence along which F is differentiable

with gradient norms ‖∇F (xk)‖ uniformly bounded away from zero, in spite of the

norms ‖G 1
Lβ

(xk)‖ tending to zero.1 Therefore, we must justify our focus on the norm

‖G 1
Lβ

(xk)‖ by other means. Our first contribution is Theorem 2.4.5: we prove that

‖G 1
Lβ

(x)‖ is proportional to the norm of the true gradient of the Moreau envelope of F

— a well studied smooth approximation of F having identical stationary points. An

immediate consequence is that even though x might not be nearly stationary for F ,

a small prox-gradient ‖G 1
Lβ

(x)‖ guarantees that x is near some point x̂ (the proximal

1See the beginning of Section 2.4 for a simple example of this type of behavior.

25

point), which is nearly stationary for F . In this sense, a small prox-gradient ‖G 1
Lβ

(x)‖

is informative about the quality of x. We note that an earlier version of this conclusion

based on a more indirect argument, appeared in [38, Theorem 5.3], and was used to

derive linear/quadratic rates of convergence for the prox-linear method under suitable

regularity conditions.

2. (Inexactness and complexity of first-order methods) For the general composite

class (2.1), coping with inexactness in the proximal subproblem solves (2.3) is unavoid-

able. We perform an inexact analysis of the prox-linear method based on two natural

models of inexactness: (i) near-optimality in function value and (ii) near-stationarity

in the dual. Based on the inexact analysis, it is routine to derive overall efficiency

estimates for the prox-linear method, where the proximal subproblems are themselves

solved by first-order algorithms. We do not record such estimates in this paper; in-

stead, we present algorithms based on a smoothing technique, for which we can prove

better efficiency estimates.

3. (Improved complexity of first-order methods through smoothing) Smoothing

is a common technique in nonsmooth optimization. The seminal paper of Nesterov

[82], in particular, derives convergence guarantees for algorithms based on infimal con-

volution smoothing in structured convex optimization. In contrast, we are not aware

of any worst-case global efficiency estimates based on smoothing for nonconvex prob-

lems. In the context of the composite class (2.1), smoothing is indeed appealing. In

the simplest case, one replaces the function h by a smooth approximation and solves

the resulting smooth problem instead.

We advocate running an inexact prox-linear method on the smooth approximation,

with the proximal subproblems approximately solved by fast-gradient methods. To

state the resulting complexity bounds, let us suppose that there is a finite upper bound

on the operator norms ‖∇c(x)‖op over all x in the domain of g, and denote it by ‖∇c‖.

26

We prove that the outlined scheme requires at most

Õ
(
L2β‖∇c‖

ε3
(F (x0)− inf F)

)
(2.4)

matrix vector products ∇c(x)v, ∇c(x)Tw and proximal operations of g and h to find a

point x satisfying ‖G 1
Lβ

(x)‖ ≤ ε. To the best of our knowledge, this is the best known

complexity bound for the problem class (2.1) among first-order methods.

4. (Complexity of finite-sum problems) Common large-scale problems in machine

learning and high dimensional statistics lead to minimizing a large finite sum of func-

tions. Consequently, we consider the finite-sum extension of the composite problem

class,

min
x

F (x) :=
1

m

m∑
i=1

hi(ci(x)) + g(x),

where now each hi is L-Lipschitz and each ci is C1-smooth with β-Lipschitz gradient.

Clearly, the finite-sum problem is itself an instance of (2.1) under the identification

h(zi, . . . , zm) := 1
m

∑m
i=1 hi(zi) and c(x) := (c1(x), . . . , cm(x)). In this structured con-

text, however, the complexity of an algorithm is best measured in terms of the number

of individual gradient evaluations ∇ci(x) the algorithm needs to find a point x satis-

fying ‖G 1
Lβ

(x)‖ ≤ ε. A routine computation shows that the efficiency estimate (2.4) of

the basic inexact prox-linear method described above leads to the complexity

O
(
m · L2β‖∇c‖

ε3
(F (x0)− inf F)

)
(2.5)

in terms of individual gradient evaluations, where now ‖∇c‖ is defined to be an upper

bound on ‖∇ci(x)‖ over all i = 1, . . . ,m and x ∈ dom g. We show that a better com-

plexity in expectation is possible by incorporating (accelerated)-incremental methods

[1, 47, 56, 69, 104] for the proximal subproblems. The resulting algorithm will generate

a point x satisfying

E[‖G 1
Lβ

(x)‖] ≤ ε,

27

after at most

O
((

mLβ

ε2
+

√
m · L2β‖∇c‖

ε3

)
· (F (x0)− inf F)

)
individual gradient evaluations∇ci. Notice that the coefficient of 1/ε3 scales at worst as
√
m — a significant improvement over (2.5). A different and complementary approach,

generalizing stochastic subgradient methods, has been recently pursued by Duchi-Ruan

[42].

5. (Acceleration) The final contribution of the paper concerns acceleration of the (exact)

prox-linear method. For additive composite problems, with c in addition convex, the

prox-gradient method is suboptimal from the viewpoint of computational complexity

[78, 81]. Accelerated gradient methods, beginning with Nesterov [79] and extended by

Beck-Teboulle [4] achieve a superior rate in terms of function values. Later, Nesterov

in [85, Page 11, item 2] showed that essentially the same accelerated schemes also

achieve a superior rate of O((β
ε
)2/3) in terms of stationarity, and even a faster rate

is possible by first regularizing the problem [85, Page 11, item 3].2 Consequently,

desirable would be an algorithm that automatically accelerates in presence of convexity,

while performing no worse than the prox-gradient method on nonconvex instances. In

the recent manuscript [48], Ghadimi and Lan described such a scheme for additive

composite problems. Similar acceleration techniques have also been used for exact

penalty formulations of nonlinear programs (2.1) with numerical success, but without

formal justification; the paper [15] is a good example.

We extend the accelerated algorithms of Ghadimi-Lan [48] for additive composite prob-

lems to the entire problem class (2.1), with inexact subproblem solves. Assuming the

diameter M := diam(dom g) is finite, the scheme comes equipped with the guarantee

min
j=1,...,k

∥∥∥G 1
2Lβ

(xj)
∥∥∥2

≤ (LβM)2 · O
(

1

k3
+
c2

k2
+
c1

k

)
,

2The short paper [86] only considered smooth unconstrained minimization; however, a minor modification
of the proof technique extends to the convex additive composite setting.

28

where the constants 0 ≤ c1 ≤ c2 ≤ 1 quantify “convexity-like behavior” of the compo-

sition. The analysis of the proposed inexact accelerated method based on functional

errors shares many features with [100] for convex additive composite problems (2.2).

The outline of the manuscript is as follows. Section 2.2 records basic notation that we

use throughout the paper. In Section 2.3, we introduce the composite problem class, first-

order stationarity, and the basic prox-linear method. Section 2.4 discusses weak-convexity

of the composite function and the relationship of the prox-gradient with the gradient of the

Moreau envelope. Section 2.5 analyzes inexact prox-linear methods based on two models of

inexactness: near-minimality and dual near-stationarity. In Section 2.6, we derive efficiency

estimates of first-order methods for the composite problem class, based on a smoothing

strategy. Section 2.7 extends the aforementioned results to problems where one seeks to

minimize an average of the composite functions. The final Section 2.8 discusses an inertial

prox-linear algorithm that is adaptive to convexity.

2.2 Notation

The notation we follow is standard. Throughout, we consider a Euclidean space, denoted by

Rd, with an inner product 〈·, ·〉 and the induced norm ‖ · ‖. Given a linear map A : Rd → Rl,

the adjoint A∗ : Rl → Rd is the unique linear map satisfying

〈Ax, y〉 = 〈x,A∗y〉 for all x ∈ Rd, y ∈ Rl.

The operator norm of A, defined as ‖A‖op := max
‖u‖≤1

‖Au‖, coincides with the maximal singular

value of A and satisfies ‖A‖op = ‖A∗‖op. For any map F : Rd → Rm, we set

lip (F) := sup
x 6=y

‖F (y)− F (x)‖
‖y − x‖

.

In particular, we say that F is L-Lipschitz continuous, for some real L ≥ 0, if the inequality

lip (F) ≤ L holds. Given a set Q in Rd, the distance and projection of a point x onto Q are

given by

dist(x;Q) := inf
y∈Q
‖y − x‖, proj(x;Q) := argmin

y∈Q
‖y − x‖,

29

respectively. The extended-real-line is the set R := R∪{±∞}. The domain and the epigraph

of any function f : Rd → R are the sets

dom f := {x ∈ Rd : f(x) < +∞}, epi f := {(x, r) ∈ Rd × R : f(x) ≤ r},

respectively. We say that f is closed if its epigraph, epi f , is a closed set. Throughout, we

will assume that all functions that we encounter are proper, meaning they have nonempty

domains and never take on the value −∞. The indicator function of a set Q ⊆ Rd, denoted

by δQ, is defined to be zero on Q and +∞ off it.

Given a convex function f : Rd → R, a vector v is called a subgradient of f at a point

x ∈ dom f if the inequality

f(y) ≥ f(x) + 〈v, y − x〉 holds for all y ∈ Rd. (2.6)

The set of all subgradients of f at x is denoted by ∂f(x), and is called the subdifferential

of f at x. For any point x /∈ dom f , we set ∂f(x) to be the empty set. With any convex

function f , we associate the Fenchel conjugate f ? : Rd → R, defined by

f ?(y) := sup
x
{〈y, x〉 − f(x)}.

If f is closed and convex, then equality f = f ?? holds and we have the equivalence

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f ?(y). (2.7)

For any function f and real ν > 0, the Moreau envelope and the proximal mapping are

defined by

fν(x) := inf
z

{
f(z) +

1

2ν
‖z − x‖2

}
,

proxνf (x) := argmin
z

{
f(z) +

1

2ν
‖z − x‖2

}
.

respectively. In particular, the Moreau envelope of an indicator function δQ is simply the

map x 7→ 1
2ν

dist2(x;Q) and the proximal mapping of δQ is the projection x 7→ proj(x;Q).

The following lemma lists well-known regularization properties of the Moreau envelope.

30

Lemma 2.2.1 (Regularization properties of the envelope). Let f : Rd → R be a closed,

convex function. Then fν is convex and C1-smooth with

∇fν(x) = ν−1(x− proxνf (x)) and lip (∇fν) ≤ 1
ν
.

If in addition f is L-Lipschitz, then the envelope fν(·) is L-Lipschitz and satisfies

0 ≤ f(x)− fν(x) ≤ L2ν

2
for all x ∈ Rd. (2.8)

Proof. The expression ∇fν(x) = ν−1(x − proxνf (x)) = ν−1 · prox(νf)∗(x) can be found in

[95, Theorem 31.5]. The inequality lip (∇fν) ≤ 1
ν

then follows since the proximal mapping

of a closed convex function is 1-Lipschitz [95, pp. 340]. The expression (2.8) follows from

rewriting fν(x) = (f ? + ν
2
‖ · ‖2)?(x) = supz {〈x, z〉 − f ?(z)− ν

2
‖z‖2} (as in e.g. [95, Theorem

16.4]) and noting that the domain of f ? is bounded in norm by L. Finally, to see that fν is

L-Lipschitz, observe ∇fν(x) ∈ ∂f(proxνf (x)) for all x, and hence ‖∇fν(x)‖ ≤ sup{‖v‖ : y ∈

Rd, v ∈ ∂f(y)} ≤ L.

2.3 The composite problem class

This work centers around nonsmooth and nonconvex optimization problems of the form

min
x

F (x) := g(x) + h(c(x)). (2.9)

Throughout, we make the following assumptions on the functional components of the prob-

lem:

1. g : Rd → R is a closed, proper, convex function;

2. h : Rm → R is a convex and L-Lipschitz continuous function:

|h(x)− h(y)| ≤ L‖x− y‖ for all x, y ∈ Rm;

3. c : Rd → Rm is a C1-smooth mapping with a β-Lipschitz continuous Jacobian map:

‖∇c(x)−∇c(y)‖op ≤ β‖x− y‖ for all x, y ∈ Rd.

The values L and β will often multiply each other; hence, we define the constant µ := Lβ.

31

2.3.1 Motivating examples

It is instructive to consider some motivating examples fitting into the framework (2.9).

Example 2.3.1 (Additive composite minimization). The most prevalent example of the

composite class (2.9) is additive composite minimization. In this case, the map c maps to

the real line and h is the identity function:

min
x

c(x) + g(x). (2.10)

Such problems appear often in statistical learning and imaging, for example. Numerous

algorithms are available, especially when c is convex, such as proximal gradient methods and

their accelerated variants [4, 86]. We will often compare and contrast techniques for general

composite problems (2.9) with those specialized to this additive composite setting.

Example 2.3.2 (Nonlinear least squares). The composite problem class also captures non-

linear least squares problems with bound constraints:

min
x
‖c(x)‖ subject to li ≤ xi ≤ ui for i = 1, . . . ,m.

Gauss-Newton type algorithm [58, 74, 76] are often the methods of choice for such problems.

Example 2.3.3 (Exact penalty formulations). Consider a nonlinear optimization problem:

min
x
{f(x) : G(x) ∈ K},

where f : Rd → R and G : Rd → Rm are smooth mappings and K ⊆ Rm is a closed convex

cone. An accompanying penalty formulation – ubiquitous in nonlinear optimization [35, 14,

26, 44, 17] – takes the form

min
x

f(x) + λ · θK(G(x)),

where θK : Rm → R is a nonnegative convex function that is zero only on K and λ > 0 is

a penalty parameter. For example, θK(y) is often the distance of y to the convex cone K

in some norm. This is an example of (2.9) under the identification c(x) = (f(x), G(x)) and

h(f,G) = f + λθK(G).

32

Example 2.3.4 (Statistical estimation). Often, one is interested in minimizing an error

between a nonlinear process model G(x) and observed data b through a misfit measure h.

The resulting problem takes the form

min
x

h
(
b−G(x)

)
+ g(x),

where g may be a convex surrogate encouraging prior structural information on x, such as the

l1-norm, squared l2-norm, or the indicator of the nonnegative orthant. The misfit h = ‖ · ‖2,

in particular, appears in nonlinear least squares. The l1-norm h = ‖ · ‖1 for example is used

in the Least Absolute Deviations (LAD) technique in regression [77, 105], Kalman smoothing

with impulsive disturbances [3], and for robust phase retrieval [42].

Another popular class of misfit measures h is a sum h =
∑

i hκ(yi) of Huber functions

hκ(τ) =

1

2κ
τ 2 , τ ∈ [−κ, κ]

|τ | − κ
2

, otherwise

The Huber function figures prominently in robust regression [23, 43, 54, 68], being much less

sensitive to outliers than the least squares penalty due to its linear tail growth. The function

h thus defined is smooth with lip (∇h) ∼ 1/κ. Hence, in particular, the term h(b − G(x))

can be treated as a smooth term reducing to the setting of additive composite minimization

(Example 2.3.1). On the other hand, we will see that because of the poor conditioning of

the gradient ∇h, methods that take into account the non-additive composite structure can

have better efficiency estimates.

Example 2.3.5 (Grey-box minimization). In industrial applications, one is often interested

in functions that are available only implicitly. For example, function and derivative evalu-

ations may require execution of an expensive simulation. Such problems often exhibit an

underlying composite structure h(c(x)). The penalty function h is known (and chosen) ex-

plicitly and is simple, whereas the mapping c(x) and the Jacobian ∇c(x) might only be

available through a simulation. Problems of this type are sometimes called grey-box min-

imization problems, in contrast to black-box minimization. The explicit separation of the

33

hard-to-compute mapping c and the user chosen penalty h can help in designing algorithms.

See for example Conn-Scheinberg-Vicente [27] and Wild [113], and references therein.

2.3.2 First-order stationary points for composite problems

Let us now explain the goal of algorithms for the problem class (2.9). Since the optimization

problem (2.9) is nonconvex, it is natural to seek points x that are only first-order station-

ary. One makes this notion precise through subdifferentials (or generalized derivatives),

which have a very explicit representation for our problem class. We recall here the rele-

vant definitions; for more details, see for example the monographs of Mordukhovich [75] and

Rockafellar-Wets [98].

Consider an arbitrary function f : Rd → R and a point x̄ with f(x̄) finite. The Fréchet

subdifferential of f at x̄, denoted ∂̂f(x̄), is the set of all vectors v satisfying

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖) as x→ x̄.

Thus the inclusion v ∈ ∂̂f(x̄) holds precisely when the affine function x 7→ f(x̄) + 〈v, x− x̄〉

underestimates f up to first-order near x̄. In general, the limit of Fréchet subgradients

vi ∈ ∂̂f(xi), along a sequence xi → x̄, may not be a Fréchet subgradient at the limiting

point x̄. Hence, one formally enlarges the Fréchet subdifferential and defines the limiting

subdifferential of f at x̄, denoted ∂f(x̄), to consist of all vectors v for which there exist

sequences xi and vi, satisfying vi ∈ ∂f(xi) and (xi, f(xi), vi) → (x̄, f(x̄), v). We say that x

is stationary for f if the inclusion 0 ∈ ∂f(x) holds.

For convex functions f , the subdifferentials ∂̂f(x) and ∂f(x) coincide with the subdif-

ferential in the sense of convex analysis (2.6), while for C1-smooth functions f , they consist

only of the gradient ∇f(x). Similarly, the situation simplifies for the composite problem

class (2.9): the two subdifferentials ∂̂F and ∂F coincide and admit an intuitive representa-

tion through a chain-rule [98, Theorem 10.6, Corollary 10.9].

Theorem 2.3.1 (Chain rule). For the composite function F , defined in (2.9), the Fréchet

34

and limiting subdifferentials coincide and admit the representation

∂F (x) = ∂g(x) +∇c(x)∗∂h(c(x)).

In summary, the algorithms we consider aim to find stationary points of F , i.e. those

points x satisfying 0 ∈ ∂F (x). In “primal terms”, it is worth noting that a point x is

stationary for F if and only if the directional derivative of F at x is nonnegative in every

direction [98, Proposition 8.32]. More precisely, the equality holds:

dist(0; ∂F (x)) = − inf
v: ‖v‖≤1

F ′(x; v), (2.11)

where F ′(x; v) is the directional derivative of F at x in direction v [98, Definition 8.1].

2.3.3 The prox-linear method

The basic algorithm we rely on for the composite problem class is the so-called prox-linear

method. To motivate this scheme, let us first consider the setting of additive composite

minimization (2.10). The most basic algorithm in this setting is the proximal gradient method

[4, 86]

xk+1 := argmin
x

{
c(xk) + 〈∇c(xk), x− xk〉+ g(x) +

1

2t
‖x− xk‖2

}
, (2.12)

or equivalently

xk+1 = proxtg (xk − t∇c(xk)) .

Notice that an underlying assumption here is that the proximal map proxtg is computable.

Convergence analysis of the prox-gradient algorithm derives from the fact that the func-

tion minimized in (2.12) is an upper model of F whenever t ≤ β−1. This majorization view-

point quickly yields an algorithm for the entire problem class (2.9). The so-called prox-linear

algorithm iteratively linearizes the map c and solves a proximal subproblem. To formalize

35

the method, we use the following notation. For any points z, y ∈ Rd and a real t > 0, define

F (z; y) := g(z) + h
(
c(y) +∇c(y)(z − y)

)
,

Ft(z; y) := F (z; y) +
1

2t
‖z − y‖2 ,

St(y) := argmin
z

Ft(z; y).

Throughout the manuscript, we will routinely use the following estimate on the error in

approximation |F (z)− F (z; y)|. We provide a quick proof for completeness.

Lemma 2.3.2. For all x, y ∈ dom g, the inequalities hold:

− µ

2
‖z − y‖2 ≤ F (z)− F (z; y) ≤ µ

2
‖z − y‖2. (2.13)

Proof. Since h is L-Lipschitz, we have |F (z)− F (z; y)| ≤ L
∥∥c(z)−

(
c(y) +∇c(y)(z − y)

)∥∥.

The fundamental theorem of calculus, in turn, implies∥∥c(z)−
(
c(y) +∇c(y)(z − y)

)∥∥ =

∥∥∥∥∫ 1

0

(
∇c(y + t(z − y))−∇c(y)

)
(z − y) dt

∥∥∥∥
≤
∫ 1

0

‖∇c(y + t(z − y))−∇c(y)‖op ‖z − y‖ dt

≤ β‖z − y‖2

(∫ 1

0

t dt

)
=
β

2
‖z − y‖2.

The result follows.

In particular, Lemma 2.3.2 implies that Ft(·; y) is an upper model for F for any t ≤ µ−1,

meaning Ft(z; y) ≥ F (z) for all points y, z ∈ dom g. The prox-linear method, formalized

in Algorithm 2, is then simply the recurrence xk+1 = St(xk). Notice that we are implicitly

assuming here that the proximal subproblem (2.14) is solvable. We will discuss the impact of

an inexact evaluation of St(·) in Section 2.5. Specializing to the additive composite setting

(2.10), equality St(x) = proxtg(x− t∇c(x)) holds and the prox-linear method reduces to the

familiar prox-gradient iteration (2.12).

The convergence rate of the prox-linear method is best stated in terms of the prox-gradient

mapping

Gt(x) := t−1(x− St(x)).

36

Algorithm 2: Prox-linear method

Initialize : A point x0 ∈ dom g and a real t > 0.

Step k: (k ≥ 0) Compute

xk+1 = argmin
x

{
g(x) + h

(
c(xk) +∇c(xk)(x− xk)

)
+

1

2t
‖x− xk‖2

}
. (2.14)

Observe that the optimality conditions for the proximal subproblem minz Ft(z;x) read

Gt(x) ∈ ∂g(St(x)) +∇c(x)∗∂h(c(x) +∇c(x)(St(x)− x)).

In particular, for any t > 0, a point x is stationary for F if and only if equality Gt(x) = 0 holds.

Hence, the norm ‖Gt(x)‖ serves as a measure of “proximity to stationarity”. In Section 2.4,

we will establish a much more rigorous justification for why the norm ‖Gt(x)‖ provides

a reliable basis for judging the quality of the point x. Let us review here the rudimentary

convergence guarantees of the method in terms of the prox-gradient, as presented for example

in [38, Section 5]. We provide a quick proof for completeness.

Proposition 2.3.3 (Efficiency of the pure prox-linear method). Supposing t ≤ µ−1, the

iterates generated by Algorithm 2 satisfy

min
j=0,...,N−1

‖Gt(xj)‖2 ≤
2t−1

(
F (x0)− F ∗

)
N

,

where we set F ∗ := lim
N→∞

F (xN).

Proof. Taking into account that Ft(·;xk) is strongly convex with modulus 1/t, we obtain

F (xk) = Ft(xk;xk) ≥ Ft(xk+1;xk) + t
2
‖Gt(xk)‖2 ≥ F (xk+1) + t

2
‖Gt(xk)‖2 .

Summing the inequalities yields

min
j=0,...,N−1

‖Gt(xj)‖2 ≤ 1

N

N−1∑
j=0

‖Gt(xj)‖2 ≤
2t−1

(
F (x0)− F ∗

)
N

,

as claimed.

37

2.4 Prox-gradient size ‖Gt‖ and approximate stationarity

Before continuing the algorithmic development, let us take a closer look at what the measure

‖Gt(x)‖ tells us about “near-stationarity” of the point x. Let us first consider the additive

composite setting (2.10), where the impact of the measure ‖Gt(x)‖ on near-stationarity is

well-understood. As discussed on page 36, the prox-linear method reduces to the prox-

gradient recurrence

xk+1 = proxg/β

(
xk −

1

β
· ∇c(xk)

)
.

First-order optimality conditions for the proximal subproblem amounts to the inclusion

G 1
β
(xk) ∈ ∇c(xk) + ∂g(xk+1),

or equivalently

G 1
β
(xk) + (∇c(xk+1)−∇c(xk)) ∈ ∇c(xk+1) + ∂g(xk+1).

Notice that the right-hand-side is exactly ∂F (xk+1). Taking into account that ∇c is β-

Lipschitz, we deduce

dist(0; ∂F (xk+1)) ≤ ‖G 1
β
(xk)‖+ ‖∇c(xk+1)−∇c(xk)‖

≤ 2‖G 1
β
(xk)‖.

(2.15)

Thus the inequality ‖G 1
β
(xk)‖ ≤ ε/2 indeed guarantees that xk+1 is nearly stationary for F

in the sense that dist(0; ∂F (xk+1)) ≤ ε. Taking into account (2.11), we deduce the bound on

directional derivative F ′(x;u) ≥ −ε in any unit direction u. With this in mind, the guarantee

of Proposition 2.3.3 specialized to the prox-gradient method can be found for example in

[86, Theorem 3].

The situation is dramatically different for the general composite class (2.10). When h is

nonsmooth, the quantity dist(0; ∂F (xk+1)) will typically not even tend to zero in the limit,

even though ‖G 1
β
(xk)‖ will tend to zero. For example, the prox-linear algorithm applied to

38

the univariate function f(x) = |x2 − 1| and initiated at x > 1, will generate a decreasing

sequence xk → 1 with f ′(xk)→ 2.3

Thus we must look elsewhere for an interpretation of the quantity ‖G 1
µ
(xk)‖. We will do

so by focusing on the Moreau envelope x 7→ F 1
2µ

(x) — a function that serves as a C1-smooth

approximation of F with the same stationary points. We argue in Theorem 2.4.5 that the

norm of the prox-gradient ‖G 1
µ
(xk)‖ is informative because ‖G 1

µ
(xk)‖ is proportional to the

norm of the true gradient of the Moreau envelope ‖∇F 1
2µ

(x)‖. Before proving this result,

we must first establish some basic properties of the Moreau envelope, which will follow from

weak convexity of the composite function F ; this is the content of the following section.

2.4.1 Weak convexity and the Moreau envelope of the composition

We will need the following standard definition.

Definition 2.4.1 (Weak convexity). We say that a function f : Rd → R is ρ-weakly convex

on a set U if for any points x, y ∈ U and a ∈ [0, 1], the approximate secant inequality holds:

f(ax+ (1− a)y) ≤ af(x) + (1− a)f(y) + ρa(1− a)‖x− y‖2.

It is well-known that for a locally Lipschitz function f : Rd → R, the following are

equivalent; see e.g. [30, Theorem 3.1].

1. (Weak convexity) f is ρ-weakly convex on Rd.

2. (Perturbed convexity) The function f + ρ
2
‖ · ‖2 is convex on Rd.

3. (Quadratic lower-estimators) For any x, y ∈ Rd and v ∈ ∂f(x), the inequality

f(y) ≥ f(x) + 〈v, y − x〉 − ρ

2
‖y − x‖2 holds.

3Notice f has three stationary points {−1, 0, 1}. Fix y > 1 and observe that x minimizes ft(·; y) if and
only if y−x

2ty ∈ ∂| · |(y
2 − 1 + 2y(x− y)). Hence y−x

2ty · (y
2 − 1 + 2y(x− y)) ≥ 0. The inequality x ≤ 1 would

immediately imply a contradiction. Thus the inequality x0 > 1 guarantees xk > 1 for all k. The claim
follows.

39

In particular, the following is true.

Lemma 2.4.2 (Weak convexity of the composition).

The function h ◦ c is ρ-weakly convex on Rd for some ρ ∈ [0, µ].

Proof. To simplify notation, set Φ := h◦ c. Fix two points x, y ∈ Rd and a vector v ∈ ∂Φ(x).

We can write v = ∇c(x)∗w for some vector w ∈ ∂h(c(x)). Taking into account convexity of

h and the inequality ‖c(y)− c(x)−∇c(x)(y − x)‖ ≤ β
2
‖y − x‖2, we then deduce

Φ(y) = h(c(y)) ≥ h(c(x)) + 〈w, c(y)− c(x)〉 ≥ Φ(x) + 〈w,∇c(x)(y − x)〉 − β‖w‖
2
‖y − x‖2

≥ Φ(x) + 〈v, y − x〉 − µ

2
‖y − x‖2.

The result follows.

Weak convexity of F has an immediate consequence on the Moreau envelope Fν .

Lemma 2.4.3 (Moreau envelope of the composite function). Fix ν ∈ (0, 1/µ). Then the

proximal map proxνF (x) is well-defined and single-valued, while the Moreau envelope Fν is

C1-smooth with gradient

∇Fν(x) = ν−1(x− proxνF (x)). (2.16)

Moreover, stationary points of Fν and of F coincide.

Proof. Fix ν ∈ (0, 1/µ). Lemma 2.4.2 together with [91, Theorem 4.4] immediately imply

that proxνF (x) is well-defined and single-valued, while the Moreau envelope Fν is C1-smooth

with gradient given by (2.16). Equation (2.16) then implies that x is stationary for Fν if

and only if x minimizes the function ϕ(z) := F (z) + 1
2ν
‖z − x‖2. Lemma 2.4.2 implies

that ϕ is strongly convex, and therefore the unique minimizer z of ϕ is characterized by

ν−1(x− z) ∈ ∂F (z). Hence stationary points of Fν and of F coincide.

Thus for ν ∈ (0, 1/µ), stationary points of F coincide with those of the C1-smooth

function Fν . More useful would be to understand the impact of ‖∇Fν(x)‖ being small, but

40

not zero. To this end, observe the following. Lemma 2.4.3 together with the definition of

the Moreau envelope implies that for any x, the point x̂ := proxνF (x) satisfies

‖x̂− x‖ ≤ ν‖∇Fν(x)‖,

dist(0; ∂F (x̂)) ≤ ‖∇Fν(x)‖.
(2.17)

Thus a small gradient ‖∇Fν(x)‖ implies that x is near a point x̂ that is nearly stationary for

F .

2.4.2 Prox-gradient and the gradient of the Moreau envelope

The final ingredient we need to prove Theorem 2.4.5 is the following lemma [10, Theorem

2.4.1]; we provide a short proof for completeness.

Lemma 2.4.4 (Smooth variational principle). Consider a closed function f : Rd → R and

suppose the inequality f(x)− inf f ≤ ε holds for some point x and real ε > 0. Then for any

λ > 0, the inequality holds:

‖λ−1(x− proxλf (x))‖ ≤
√

2ε

λ

If f is α-strongly convex (possibly with α = 0), then the estimate improves to

‖λ−1(x− proxλf (x))‖ ≤
√

ε

λ(1 + λα
2

)
.

Proof. Fix a point y ∈ argmin
z

{
f(z) +

1

2λ
‖z − x‖2

}
. We deduce

f(y) +
1

2λ
‖y − x‖2 ≤ f(x) ≤ f ∗ + ε ≤ f(y) + ε.

Hence we deduce λ−1‖y−x‖ ≤
√

2ε
λ

, as claimed. If f is α-strongly convex, then the function

z 7→ f(z) + 1
2λ
‖z − x‖2 is (α + λ−1)-strongly convex and therefore(

f(y) +
1

2λ
‖y − x‖2

)
+
λ−1 + α

2
‖y − x‖2 ≤ f(x) ≤ f ∗ + ε ≤ f(y) + ε.

The claimed inequality follows along the same lines.

41

We can now quantify the precise relationship between the norm of the prox-gradient

‖Gt(x)‖ and the norm of the true gradient of the Moreau envelope ‖∇F t
1+tµ

(x)‖.

Theorem 2.4.5 (Prox-gradient and near-stationarity). For any point x and real constant

t > 0, the inequality holds:

1
(1+µt)(1+

√
µt)

∥∥∥∇F t
1+tµ

(x)
∥∥∥ ≤ ‖Gt(x)‖ ≤ 1+2tµ

1+tµ

(√
tµ

1+tµ
+ 1
)∥∥∥∇F t

1+tµ
(x)
∥∥∥ . (2.18)

Proof. To simplify notation, throughout the proof set

x̄ := St(x) = argmin
z

Ft(z;x),

x̂ := prox tF
1+tµ

(x) = argmin
z

{F (z) + µ+t−1

2
‖z − x‖2}.

Notice that x̂ is well-defined by Lemma 2.4.3.

We begin by establishing the first inequality in (2.18). For any point z, we successively

deduce

F (z) ≥ Ft(z;x)− µ+t−1

2
‖z − x‖2 ≥ Ft(x̄;x) + 1

2t
‖x̄− z‖2 − µ+t−1

2
‖z − x‖2

≥ F (x̄) +
1

2t
‖x̄− z‖2 − µ+t−1

2
‖z − x‖2 + t−1−µ

2
‖x̄− x‖2,

(2.19)

where the first and third inequalities follow from (2.13) and the second from strong convexity

of Ft(·;x).

Define the function ζ(z) := F (z) + µ+t−1

2
‖z−x‖2− 1

2t
‖x̄− z‖2 and notice that ζ is convex

by Lemma 2.4.2. Inequality (2.19) directly implies

ζ(x̄)− inf ζ ≤
(
F (x̄) + µ+t−1

2
‖x̄− x‖2

)
−
(
F (x̄) + t−1−µ

2
‖x̄− x‖2

)
= µ‖x̄− x‖2.

Notice the relation, proxtζ(x̄) = prox tF
1+tµ

(x) = x̂. Setting λ := t and ε := µ‖x̄ − x‖2 and

using Lemma 2.4.4 (convex case α = 0) with x̄ in place of x, we conclude√
µ
t
‖x̄− x‖ ≥ ‖t−1(x̄− proxtζ(x̄))‖ = ‖t−1(x̄− x̂)‖ ≥ ‖t−1(x− x̂)‖ − ‖t−1(x̄− x)‖.

Rearranging and using (2.16) yields the first inequality in (2.18), as claimed.

42

We next establish the second inequality in (2.18). The argument is in the same spirit as

the previous part of the proof. For any point z, we successively deduce

Ft(z;x) ≥ (F (z) + µ+t−1

2
‖z − x‖2)− µ‖z − x‖2

≥ F (x̂) + µ+t−1

2
‖x̂− x‖2 + 1

2t
‖x̂− z‖2 − µ‖z − x‖2,

(2.20)

where the first inequality follows from (2.13) and the second from t−1-strong convexity of

z 7→ F (z) + µ+t−1

2
‖z − x‖2. Define now the function

Ψ(z) := Ft(z;x)− 1
2t
‖x̂− z‖2 + µ‖z − x‖2.

Combining (2.13) and (2.20), we deduce

Ψ(x̂)− inf Ψ ≤
(
Ft(x̂;x) + µ‖x̂− x‖2

)
−
(
F (x̂) + µ+t−1

2
‖x̂− x‖2

)
≤ µ‖x̂− x‖2.

Notice that Ψ is strongly convex with parameter α := 2µ. Setting ε := µ‖x̂ − x‖2 and

λ = t, and applying Lemma 2.4.4 with x̂ in place of x, we deduce√
µ

t(1+tµ)
‖x̂− x‖ ≥ ‖t−1(x̂− proxtΨ(x̂))‖ ≥ ‖t−1(x− proxtΨ(x̂))‖ − ‖t−1(x̂− x)‖. (2.21)

To simplify notation, set ẑ := proxtΨ(x̂). By definition of Ψ, equality

ẑ = argmin
z

{
Ft(z;x) + µ‖z − x‖2

}
holds,

and therefore 2µ(x− ẑ) ∈ ∂Ft(ẑ;x). Taking into account that Ft(·;x) is t−1-strongly convex,

we deduce

‖2µ(x− ẑ)‖ ≥ dist (0; ∂Ft(ẑ;x)) ≥ t−1‖ẑ − x̄‖ ≥ ‖t−1(x− x̄)‖ − ‖t−1(x− ẑ)‖.

Rearranging and combining the estimate with (2.16), (2.21) yields the second inequality in

(2.18).

In the most important setting t = 1/µ, Theorem 2.4.5 reduces to the estimate

1
4

∥∥∥∇F 1
2µ

(x)
∥∥∥ ≤ ∥∥G1/µ(x)

∥∥ ≤ 3
2

(
1 + 1√

2

)∥∥∥∇F 1
2µ

(x)
∥∥∥ . (2.22)

43

A closely related result has recently appeared in [38, Theorem 5.3], with a different proof, and

has been extended to a more general class of Taylor-like approximations in [36]. Combining

(2.22) and (2.17) we deduce that for any point x, there exists a point x̂ (namely x̂ =

proxF/2µ(x))) satisfying
‖x̂− x‖ ≤ 2

µ
‖G1/µ(x)‖,

dist(0; ∂F (x̂)) ≤ 4‖G1/µ(x)‖.
(2.23)

Thus if ‖G1/µ(x)‖ is small, the point x is “near” some point x̂ that is “nearly-stationary” for

F . Notice that x̂ is not computable, since it requires evaluation of proxF/2µ. Computing x̂ is

not the point, however; the sole purpose of x̂ is to certify that x is approximately stationary

in the sense of (2.23).

2.5 Inexact analysis of the prox-linear method

In practice, it is often impossible to solve the proximal subproblems minz Ft(z; y) exactly. In

this section, we explain the effect of inexactness in the proximal subproblems (2.14) on the

overall performance of the prox-linear algorithm. By “inexactness”, one can mean a variety

of concepts. Two most natural ones are that of (i) terminating the subproblems based on

near-optimality in function value and (ii) terminating based on “near-stationarity”.

Which of the two criteria is used depends on the algorithms that are available for solv-

ing the proximal subproblems. If primal-dual interior-point methods are applicable, then

termination based on near-optimality in function value is most appropriate. When the sub-

problems themselves can only be solved by first-order methods, the situation is less clear. In

particular, if near-optimality in function value is the goal, then one must use saddle-point

methods. Efficiency estimates of saddle-point algorithms, on the other hand, depend on the

diameter of the feasible region, rather than on the quality of the initial iterate (e.g. distance

of initial iterate to the optimal solution). Thus saddle-point methods cannot be directly

warm-started, that is one cannot easily use iterates from previous prox-linear subproblems

to speed up the algorithm for the current subproblem. Moreover, there is a conceptual incom-

44

patibility of the prox-linear method with termination based on functional near-optimality.

Indeed, the prox-linear method seeks to make the stationarity measure ‖Gt(x)‖ small, and

so it seems more fitting that the proximal subproblems are solved based on near-stationarity

themselves. In this section, we consider both termination criteria. The arguments are quick

modifications of the proof of Proposition 2.3.3.

2.5.1 Near-optimality in the subproblems

We first consider the effect of solving the proximal subproblems up to a tolerance on function

values. Given a tolerance ε > 0, we say that a point x is an ε-approximate minimizer of a

function f : Rd → R whenever the inequality holds:

f(x) ≤ inf f + ε.

Consider now a sequence of tolerances εk ≥ 0 for k = 1, 2 . . . ,∞. Then given a current

iterate xk, an inexact prox-linear algorithm for minimizing F can simply declare xk+1 to be

an εk+1-approximate minimizer of Ft(·;xk). We record this scheme in Algorithm 3.

Algorithm 3: Inexact prox-linear method: near-optimality

Initialize : A point x0 ∈ dom g, a real t > 0, and a sequence {εi}∞i=1 ⊂ [0,+∞).

Step k: (k ≥ 0) Set xk+1 to be an εk+1-approximate minimizer of Ft(·;xk).

Before stating convergence guarantees of the method, we record the following observation

stating that the step-size of the inexact prox-linear method ‖xk+1 − xk‖ and the accuracy

εk jointly control the size of the true prox-gradient ‖Gt(xk)‖. As a consequence, the step-

sizes ‖xk+1− xk‖ generated throughout the algorithm can be used as surrogates for the true

stationarity measure ‖Gt(xk)‖.

Lemma 2.5.1. Suppose x+ is an ε-approximate minimizer of Ft(·;x). Then the inequality

holds:

‖Gt(x)‖2 ≤ 4t−1ε+ 2
∥∥t−1(x+ − x)

∥∥2
.

45

Proof. Let z∗ be the true minimizer of Ft(·;x). We successively deduce

‖Gt(x)‖2 ≤ 4

t
· 1

2t

∥∥x+ − z∗
∥∥2

+ 2
∥∥t−1(x+ − x)

∥∥2

≤ 4

t
·
(
Ft(x

+;x)− Ft(z∗;x)
)

+ 2
∥∥t−1(x+ − x)

∥∥2
(2.24)

≤ 4

t
· ε+ 2

∥∥t−1(x+ − x)
∥∥2
,

where the first inequality follows from the triangle inequality and the estimate (a + b)2 ≤

2(a2 + b2) for any reals a, b, and the second inequality is an immediate consequence of strong

convexity of the function Ft(·;x).

The inexact prox-linear algorithm comes equipped with the following guarantee.

Theorem 2.5.2 (Convergence of the inexact prox-linear algorithm: near-optimality).

Supposing t ≤ µ−1, the iterates generated by Algorithm 3 satisfy

min
j=0,...,N−1

‖Gt(xj)‖2 ≤
2t−1

(
F (x0)− F ∗ +

∑N
j=1 εj

)
N

,

where we set F ∗ := liminf
k→∞

F (xk).

Proof. Let x∗k be the exact minimizer of Ft(·;xk). Note then the equality Gt(xk) = t−1(x∗k −

xk). Taking into account that Ft(·;xk) is strongly convex with modulus 1/t, we deduce

F (xk) = Ft(xk;xk) ≥ Ft(x
∗
k;xk) + t

2
‖Gt(xk)‖2 ≥ Ft(xk+1;xk)− εk+1 + t

2
‖Gt(xk)‖2 .

Then the inequality t ≤ µ−1 along with (2.13) implies that Ft(·;xk) is an upper model of

F (·) and therefore

F (xk) ≥ F (xk+1)− εk+1 + t
2
‖Gt(xk)‖2 . (2.25)

We conclude

min
j=0,...,N−1

‖Gt(xj)‖2 ≤ 1

N

N−1∑
j=0

‖Gt(xj)‖2 ≤
2t−1

(∑N−1
j=0 F (xj)− F (xj+1) +

∑N−1
j=0 εj+1

)
N

≤
2t−1

(
F (x0)− F ∗ +

∑N−1
j=0 εj+1

)
N

.

The proof is complete.

46

Thus in order to maintain the rate afforded by the exact prox-linear method, it suffices

for the errors {εk}∞k=1 to be summable; e.g. set εk ∼ 1
k1+q

with q > 0.

2.5.2 Near-stationarity in the subproblems

In the previous section, we considered the effect of solving the proximal subproblems up

to an accuracy in functional error. We now consider instead a model of inexactness for the

proximal subproblems based on near-stationarity. A first naive attempt would be to consider

a point z to be ε-stationary for the proximal subproblem, minFt(·;x), if it satisfies

dist(0; ∂zFt(z;x)) ≤ ε.

This assumption, however, is not reasonable since first-order methods for this problem do not

produce such points z, unless h is smooth. Instead, let us look at the Fenchel dual problem.

To simplify notation, write the target subproblem minFt(·;x) as

min
z

h(b− Az) +G(z) (2.26)

under the identification G(z) = g(z) + 1
2t
‖z − x‖2, A = −∇c(x), and b = c(x) − ∇c(x)x.

Notice that G is t−1-strongly convex and therefore G? is C1-smooth with t-Lipschitz gradient.

The Fenchel dual problem, after negation, takes the form [98, Example 11.41]:

min
w

ϕ(w) := G?(A∗w)− 〈b, w〉+ h?(w). (2.27)

Thus the dual objective function ϕ is a sum of a smooth convex function G?(A∗w)− 〈b, w〉

and the simple nonsmooth convex term h?. Later on, when x depends on an iteration counter

k, we will use the notation ϕk, Gk, Ak, bk instead to make precise that these objects depend

on k.

Typical first-order methods, such as prox-gradient and its accelerated variants can gen-

erate a point w for the problem (2.27) satisfying

dist(0; ∂ϕ(w)) ≤ ε (2.28)

47

up to any specified tolerance ε > 0. Such schemes in each iteration only require evaluation

of the gradient of the smooth function G?(A∗w)−〈b, w〉 along with knowledge of a Lipschitz

constant of the gradient, and evaluation of the proximal map of h?. For ease of reference, we

record these quantities here in terms of the original functional components of the composite

problem (2.9). Since the proof is standard, we have placed it in Appendix A.1.

Lemma 2.5.3. The following are true for all points z and w and real t > 0:

• The equation holds:

proxth?(w) = t
(
w/t− proxh/t(w/t)

)
. (2.29)

• The equations hold:

G?(z) = (g?)1/t(z + x/t)− 1
2t
‖x‖2 and ∇G?(z) = proxtg(x+ tz). (2.30)

Consequently, the gradient map ∇
(
G?◦A∗−〈·, b〉

)
is Lipschitz continuous with constant

t‖∇c(x)‖2
op and admits the representation:

∇
(
G? ◦ A∗ − 〈b, ·〉

)
(w) = ∇c(x)

(
x+ proxtg(x− t∇c(x)∗w)

)
− c(x). (2.31)

Thus, suppose we have found a point w satisfying (2.28). How can we then generate

a primal iterate x+ at which to form the prox-linear subproblem for the next step? The

following lemma provides a simple recipe for doing exactly that. It shows how to generate

from w a point that is a true minimizer to a slight perturbation of the proximal subproblem.

Lemma 2.5.4 (Primal recovery from dual ε-stationarity). Let ϕ be the function defined in

(2.27). Fix a point w ∈ dom ϕ and a vector ζ ∈ ∂ϕ(w). Then the point x := ∇G?(A∗w) is

the true minimizer of the problem

min
z

h(ζ + b− Az) +G(z). (2.32)

Proof. Appealing to the chain rule, ∂ϕ(w) = A∇G?(A∗w)− b+ ∂h?(w), we deduce

ζ + b ∈ A∇G?(A∗w) + ∂h?(w) = Ax+ ∂h?(w).

48

The relation (2.7) then implies w ∈ ∂h(ζ+b−Ax). Applying A∗ to both sides and rearranging

yields

0 ∈ −A∗∂h(ζ + b− Ax) + A∗w ⊆ −A∗∂h(ζ + b− Ax) + ∂G(x),

where the last inclusion follows from applying (2.7) to G. The right-hand-side is exactly the

subdifferential of the objective function in (2.32) evaluated at x. The result follows.

This lemma directly motivates the following inexact extension of the prox-linear algorithm

(Algorithm 4), based on dual near-stationary points.

Algorithm 4: Inexact prox-linear method: near-stationarity

Initialize : A point x0 ∈ dom g, a real t > 0, and a sequence {εi}∞i=1 ⊂ [0,+∞).

Step k: (k ≥ 0) Find (xk+1, ζk+1) such that ‖ζk+1‖ ≤ εk+1 and xk+1 is the minimizer

of the function

z 7→ g(z) + h
(
ζk+1 + c(xk) +∇c(xk)(z − xk)

)
+

1

2t
‖z − xk‖2. (2.33)

Algorithm 4 is stated in a way most useful for convergence analysis. On the other hand,

it is not very explicit. To crystallize the ideas, let us concretely describe how one can

implement step k of the scheme. First, we find a point wk+1 that is εk+1-stationary for the

dual problem (2.27). More precisely, we find a pair (wk+1, ζk+1) satisfying ζk+1 ∈ ∂ϕk(wk+1)

and ‖ζk+1‖ ≤ εk+1. We can achieve this by a proximal gradient method (or its accelerated

variants) on the dual problem (2.27). Then combining Lemma 2.5.4 with equation (2.30),

we conclude that we can simply set

xk+1 := ∇G?(A∗wk+1) = proxtg(xk − t∇c(xk)∗wk+1).

We record this more explicit description of Algorithm 4 in Algorithm 5. The reader should

keep in mind that even though Algorithm 5 is more explicit, the convergence analysis we

present will use the description in Algorithm 4.

49

Algorithm 5: Inexact prox-linear method: near-stationarity (explicit)

Initialize : A point x0 ∈ dom g, a real t > 0, and a sequence {εi}∞i=1 ⊂ [0,+∞).

Step k: (k ≥ 0) Define the function

ϕk(w) := (g?)1/t

(
xk/t−∇c(xk)∗w

)
−
〈
c(xk)−∇c(xk)xk, w

〉
+ h?(w).

Find a point wk+1 satisfying dist(0; ∂ϕk(wk+1)) ≤ εk+1.

Set xk+1 = proxtg(xk − t∇c(xk)∗wk+1).

Before stating convergence guarantees of the method, we record the following observation

stating that the step-size ‖xk+1−xk‖ and the error εk+1 jointly control the stationarity mea-

sure ‖Gt(xk)‖. In other words, one can use the step-size ‖xk+1 − xk‖, generated throughout

the algorithm, as a surrogate for the true stationarity measure ‖Gt(xk)‖.

Lemma 2.5.5. Suppose x+ is a minimizer of the function

z 7→ g(z) + h
(
ζ + c(x) +∇c(x)(z − x)

)
+

1

2t
‖z − x‖2

for some vector ζ. Then for any real t > 0, the inequality holds:

‖Gt(x)‖2 ≤ 8Lt−1 · ‖ζ‖+ 2
∥∥t−1(x+ − x)

∥∥2
. (2.34)

Proof. Define the function

l(z) = g(z) + h
(
ζ + c(x) +∇c(x)(z − x)

)
+

1

2t
‖z − x‖2.

50

Let z∗ be the true minimizer of Ft(·;x). We successively deduce

‖Gt(x)‖2 ≤ 4

t
· 1

2t

∥∥x+ − z∗
∥∥2

+ 2
∥∥t−1(x+ − x)

∥∥2

≤ 4

t
·
(
Ft(x

+;x)− Ft(z∗;x)
)

+ 2
∥∥t−1(x+ − x)

∥∥2
(2.35)

≤ 4

t
(l(x+)− l(z∗) + 2L‖ζ‖) + 2

∥∥t−1(x+ − x)
∥∥2

≤ 8t−1L‖ζ‖+ 2
∥∥t−1(x+ − x)

∥∥2
,

where the first inequality follows from the triangle inequality and the estimate (a + b)2 ≤

2(a2 + b2) for any reals a, b, the second inequality is an immediate consequence of strong

convexity of the function Ft(·;x), and the third follows from Lipschitz continuity of h.

Theorem 2.5.6 explains the convergence guarantees of the method; c.f. Proposition 2.3.3.

Theorem 2.5.6 (Convergence of the inexact prox-linear method: near-stationarity). Sup-

posing t ≤ µ−1, the iterates generated by Algorithm 4 satisfy

min
j=0,...,N−1

‖Gt(xj)‖2 ≤
4t−1

(
F (x0)− F ∗ + 4L ·

∑N
j=1 εj

)
N

,

where we set F ∗ := liminf
k→∞

F (xk).

Proof. Observe the inequalities:

F (xk+1) ≤ Ft(xk+1;xk)

≤ h
(
ζk+1 + c(xk) +∇c(xk)(xk+1 − xk)

)
+ g(xk+1) + 1

2t
‖xk+1 − xk‖2 + L · εk+1.

Since the point xk+1 minimizes the 1
t
-strongly convex function in (2.33), we deduce

F (xk+1) ≤ h
(
ζk+1 + c(xk)

)
+ g(xk) + L · εk+1 − 1

2t
‖xk+1 − xk‖2

≤ F (xk) + 2L · εk+1 − 1
2t
‖xk+1 − xk‖2 .

(2.36)

Summing along the indices j = 0, . . . , N − 1 yields

N−1∑
j=0

‖t−1(xj+1 − xj)‖2 ≤ 2

t

(
F (x0)− F ∗ + 2L

N−1∑
j=0

εj+1

)
.

51

Taking into account Lemma 2.5.5, we deduce

min
j=0,1,...,N−1

‖Gt(xj)‖2 ≤ 1

N

N−1∑
j=0

‖Gt(xj)‖2 ≤
4t−1(F (x0)− F ∗ + 4L

∑N
j=1 εj)

N
, (2.37)

as claimed.

In particular, to maintain the same rate in N as the exact prox-linear method in Propo-

sition 2.3.3, we must be sure that the sequence εk is summable. Hence, we can set εk ∼ 1
k1+q

for any q > 0.

2.6 Overall complexity for the composite problem class

In light of the results of Section 2.5, we can now use the inexact prox-linear method to derive

efficiency estimates for the composite problem class (2.9), where the proximal subproblems

are themselves solved by first-order methods. As is standard, we will assume that the func-

tions h and g are prox-friendly, meaning that proxth and proxtg can be evaluated. Given a

target accuracy ε > 0, we aim to determine the number of basic operations – matrix-vector

multiplications ∇c(x)v and ∇c(x)∗w, evaluations of proxth, proxtg – needed to find a point

x satisfying ‖Gt(x)‖ ≤ ε. To make progress, in this section we also assume that we have

available a real value, denoted ‖∇c‖, satisfying

‖∇c‖ ≥ sup
x∈dom g

‖∇c(x)‖op.

In particular, we assume that the right-hand-side is finite. Strictly speaking, we only need

the inequality ‖∇c‖ ≥ ‖∇c(xk)‖op to holds along an iterate sequence xk generated by the

inexact prox-linear method. This assumption is completely expected: even when c is a linear

map, convergence rates of first-order methods for the composite problem (2.9) depend on

some norm of the Jacobian ∇c.

The strategy we propose can be succinctly summarized as follows:

• (Smoothing+prox-linear+fast-gradient) We will replace h by a smooth approximation

(Moreau envelope), with a careful choice of the smoothing parameter. Then we will

52

apply an inexact prox-linear method to the smoothed problem, with the proximal

subproblems approximately solved by fast-gradient methods.

The basis for the ensuing analysis is the fast-gradient method of Nesterov [86] for min-

imizing convex additive composite problems. The following section recalls the scheme and

records its efficiency guarantees, for ease of reference.

2.6.1 Interlude: fast gradient method for additive convex composite problems

This section discusses a scheme from [86] that can be applied to any problem of the form

min
x

fp(x) := f(x) + p(x), (2.38)

where f : Rd → R is a convex C1-smooth function with Lf -Lipschitz gradient and p : Rd → R

is a closed α-strongly convex function (α ≥ 0). The setting α = 0 signifies that p is just

convex.

We record in Algorithm 6 the so-called “fast-gradient method” for such problems [86,

Accelerated Method].

The method comes equipped with the following guarantee [86, Theorem 6].

Theorem 2.6.1. Let x∗ be a minimizer of fp and suppose α > 0. Then the iterates xj

generated by Algorithm 6 satisfy:

fp(xj)− fp(x∗) ≤
(

1 +

√
α

2Lf

)−2(j−1)
Lf
4
‖x∗ − x0‖2.

Let us now make a few observations that we will call on shortly. First, each iteration

of Algorithm 6 only requires two gradient computations, ∇f(yj) in (2.40) and ∇f(xj+1) in

(2.41), and two proximal operations, proxp/Lf in (2.40) and proxp in (2.39).

Secondly, let us translate the estimates in Theorem 2.6.1 to estimates based on desired

accuracy. Namely, simple arithmetic shows that the inequality

fp(xj)− fp(x∗) ≤ ε

53

Algorithm 6: Fast gradient method of Nesterov [86, Accelerated Method]

Initialize : Fix a point x0 ∈ dom p, set θ0 = 0, define the function

ψ0(x) := 1
2
‖x− x0‖2.

Step j: (j ≥ 0) Find aj+1 > 0 from the equation

a2j+1

θj+aj+1
= 2

1+αθj
Lf

.

Compute the following:

θj+1 = θj + aj+1,

vj = argmin
x

ψj(x), (2.39)

yj =
θjxj+aj+1vj

θj+1
,

xj+1 = argmin
x

{f(yj) + 〈∇f(yj), x− yj〉+
Lf
2
‖x− yj‖2 + p(x)}. (2.40)

Define the function

ψj+1(x) = ψj(x) + aj+1[f(xj+1) + 〈∇f(xj+1), x− xj+1〉+ p(x)]. (2.41)

holds as soon as the number of iterations j satisfies

j ≥ 1 +

√
Lf
2α
· log

(
Lf‖x∗ − x0‖2

4ε

)
. (2.42)

Finally, given a point x consider a single prox-gradient iteration x̂ := prox p
Lf

(
x− 1

Lf
∇f(x)

)
.

Then we successively deduce

dist2(0; ∂f p(x̂)) ≤ 4‖Lf (x̂− x)‖2 ≤ 8Lf (f
p(x)− fp(x̂)) ≤ 8Lf (f

p(x)− fp(x∗))

where the first inequality is (2.15) and the second is the descent guarantee of the prox-

gradient method (e.g. [86, Theorem 1]). Thus the inequality fp(x) − fp(x∗) ≤ ε2/(8Lf)

would immediately imply dist(0; ∂f p(x̂)) ≤ ε. Therefore, let us add an extra prox-gradient

54

step x̂j := prox p
Lf

(
xj − 1

Lf
∇f(xj)

)
to each iteration of Algorithm 6. Appealing to the linear

rate in (2.42), we then deduce that we can be sure of the inequality

dist(0; ∂f p(x̂j)) ≤ ε

as soon as the number of iterations j satisfies

j ≥ 1 +

√
Lf
2α
· log

(
2L2

f‖x∗ − x0‖2

ε2

)
. (2.43)

With this modification, each iteration of the scheme requires two gradient evaluations of f

and three proximal operations of p.

2.6.2 Total cost if h is smooth

In this section, we will assume that h is already C1-smooth with the gradient having Lip-

schitz constant Lh, and calculate the overall cost of the inexact prox-linear method that

wraps a linearly convergent method for the proximal subproblems. As we have discussed in

Section 2.5, the proximal subproblems can either be approximately solved by primal methods

or by dual methods. The dual methods are better adapted for a global analysis, since the

dual problem has a bounded domain; therefore let us look first at that setting.

Remark 1 (Asymptotic notation). To make clear dependence on the problem’s data, we will

sometimes use asymptotic notation [11, Section 3.5]. For two functions ψ and Ψ of a vector

ω ∈ R`, the symbol ψ(ω) = O(Ψ(ω)) will mean that there exist constants K,C > 0 such

that the inequality, |ψ(ω)| ≤ C · |Ψ(ω)|, holds for all ω satisfying ωi ≥ K for all i = 1, . . . , `.

When using asymptotic notation in this section, we will use the vector ω to encode the data

of the problem ω = (‖∇c‖, Lh, L, β, F (x0) − F ∗, 1/ε). In the seeing h is not differentiable,

Lh will be omitted from ω.

Total cost based on dual near-stationarity in the subproblems

We consider the near-stationarity model of inexactness as in Section 2.5.2. Namely, let us

compute the total cost of Algorithm 5, when each subproblem minw ϕk(w) is approximately

55

minimized by the fast-gradient method (Algorithm 6). In the notation of Section 2.6.1, we

set f(w) = G?
k(A

∗
kw) − 〈bk, w〉 and p = h?. By Lemma 2.5.3, the function f is C1-smooth

with gradient having Lipschitz constant Lf := t‖∇c(xk)‖2
op. Since ∇h is assumed to be

Lh-Lipschitz, we deduce that h? is 1
Lh

-strongly convex. Notice moreover that since h is L-

Lipschitz, any point in dom h? is bounded in norm by L; hence the diameter of dom h? is at

most 2L. Let us now apply Algorithm 6 (with the extra prox-gradient step) to the problem

minw ϕk(w) = f(w) + p(w). According to the estimate (2.43), we will be able to find the

desired point wk+1 satisfying dist(0; ∂ϕk(wk+1))) ≤ εk+1 after at most

1 +

⌈√
t‖∇c(xk)‖2

opLh

2
· log

(
8t2‖∇c(xk)‖4

opL
2

ε2
k+1

)⌉
. (2.44)

iterations of the fast-gradient method. According to Lemma 2.5.3, each gradient evaluation

∇f requires two-matrix vector multiplications and one proximal operation of g, while the

proximal operation of p amounts to a single proximal operation of h. Thus each iteration

of Algorithm 6, with the extra prox-gradient step requires 9 basic operations. Finally to

complete step k of Algorithm 6, we must take one extra proximal map of g. Hence the number

of basic operations needed to complete step k of Algorithm 6 is 9×(equation (2.44))+1, where

we set t = 1/µ.

Let us now compute the total cost across the outer iterations k. Theorem 2.5.6 shows

that if we set εk = 1
Lk2

in each iteration k of Algorithm 5, then after N outer iterations we

are guaranteed

min
j=0,...,N−1

∥∥∥G 1
µ
(xj)

∥∥∥2

≤
4µ
(
F (x0)− F ∗ + 8

)
N

. (2.45)

Thus we can find a point x satisfying ∥∥∥G 1
µ
(x)
∥∥∥ ≤ ε

after at most N (ε) :=
⌈

4µ(F (x0)−F ∗+8)
ε2

⌉
outer-iterations and therefore after

⌈
4µ(F (x0)− F ∗ + 8)

ε2

⌉(
10 + 9

⌈√
‖∇c‖2Lh

2µ
· log

(
8‖∇c‖4L2(1 +N (ε))4

β2

)⌉)
(2.46)

56

basic operations in total. Thus the number of basic operations is on the order of

O

(√
‖∇c‖2 · Lh · µ · (F (x0)− F ∗)

ε2
log

(
‖∇c‖2L3β(F (x0)− F ∗)2)

ε4

))
. (2.47)

Total cost based on approximate minimizers of the subproblems

Let us look at what goes wrong with applying Algorithm 3, with the proximal subproblems

minz Ft(z;x) approximately solved by a primal only method. To this end, notice that the

objective function Ft(·;x) is a sum of the 1
t
-strongly convex and prox-friendly term g +

1
2t
‖ · −x‖2 and the smooth convex function z 7→ h(c(x) + ∇c(x)(z − x)). The gradient

of the smooth term is Lipschitz continuous with constant ‖∇c(x)‖2
opLh. Let us apply the

fast gradient method (Algorithm 6) to the proximal subproblem directly. According to the

estimate (2.42), Algorithm 6 will find an ε-approximate minimizer z of Ft(·;x) after at most

1 +

√
t‖∇c(x)‖2

opLh

2
· log

(‖∇c(x)‖2
opLh‖x∗ − z0‖2

4ε

)
(2.48)

iterations, where x∗ is the minimizer of Ft(·;x) and the scheme is initialized at z0. The

difficulty is that there appears to be no simple way to bound the distance ‖z0− z∗‖ for each

proximal subproblem, unless we assume that dom g is bounded. We next show how we can

correct for this difficulty by more carefully coupling the inexact prox-linear algorithm and

the linearly convergent algorithm for solving the subproblem. In particular, in each outer

iteration of the proposed scheme (Algorithm 7), one runs a linearly convergent subroutine

M on the prox-linear subproblem for a fixed number of iterations; this fixed number of

inner iterations depends explicitly on M’s linear rate of convergence. The algorithmic idea

behind this coupling originates in [70]. The most interesting consequence of this scheme

is on so-called finite-sum problems, which we will discuss in Section 2.7. In this context,

the algorithms that one runs on the proximal subproblems are stochastic. Consequently, we

adapt our analysis to a stochastic setting as well, proving convergence rates on the expected

norm of the prox-gradient ‖Gt(xk)‖. When the proximal subproblems are approximately

solved by deterministic methods, the convergence rates are all deterministic as well.

57

The following definition makes precise the types of algorithms that we will be able to

accommodate as subroutines for the prox-linear subproblems.

Definition 2.6.2 (Linearly convergent subscheme). A method M is a linearly convergent

subscheme for the composite problem (2.9) if the following holds. For any points x ∈ Rd,

there exist constants γ ≥ 0 and τ ∈ (0, 1) so that whenM is applied to minFt(·;x) with an

arbitrary z0 ∈ dom g as an initial iterate, M generates a sequence {zi}∞i=1 satisfying

E[Ft(zi;x)− Ft(x∗;x)] ≤ γ (1− τ)i ‖z0 − x∗‖2 for i = 1, . . . ,∞, (2.49)

where x∗ is the minimizer of Ft(·;x).

We apply a linearly convergent subscheme to proximal subproblems minFt(·;xk), where

xk is generated in the previous iteration of an inexact prox-linear method. We then denote

the resulting constants (γ, τ) in the guarantee (2.49) by (γk, τk).

The overall method we propose is Algorithm 7. It is important to note that in order to

implement this method, one must know explicitly the constants (γ, τ) for the methodM on

each proximal subproblem.

Algorithm 7: Inexact prox-linear method: primal-only subsolves I

Initialize : A point x0 ∈ dom g, real t > 0, a linearly convergent subscheme M for

(2.9).

Step k: (k ≥ 1)

Set xk,0 := xk. Initialize M on the problem minz Ft(z;xk) at xk,0, and run M for

Tk :=

⌈
1

τk
log(4tγk)

⌉
iterations, (2.50)

thereby generating iterates xk,1, . . . , xk,Tk .

Set xk+1 = xk,Tk .

The following lemma shows that the proposed number of inner iterations (2.50) leads to

58

significant progress in the prox-linear subproblems, compared with the initialization. Hence-

forth, we let Exk [·] denote the expectation of a quantity conditioned on the iterate xk.

Lemma 2.6.3. The iterates xk generated by Algorithm 7 satisfy

Exk [Ft(xk+1;xk)− Ft(x∗k;xk)] ≤
1

4t
‖xk − x∗k‖

2 . (2.51)

Proof. In each iteration k, the linear convergence of algorithm M implies

Exk [Ft(xk+1;xk)− Ft(x∗k;xk)] ≤ γk (1− τk)Tk ‖xk,0 − x∗k‖2

≤ γke
−τkTk‖xk − x∗k‖2

≤ 1

4t
‖xk − x∗k‖2,

as claimed.

With this lemma at hand, we can establish convergence guarantees of the inexact method.

Theorem 2.6.4 (Convergence of Algorithm 7). Supposing t ≤ µ−1, the iterates xk generated

by Algorithm 7 satisfy

min
j=0,...,N−1

E[‖Gt(xj)‖2] ≤ 4t−1 (F (x0)− inf F)

N
.

Proof. The proof follows the same outline as Theorem 2.5.2. Observe

Exk [F (xk)− F (xk+1)] = Exk [Ft(xk;xk)− F (xk+1)]

≥ Exk [Ft(x
∗
k;xk)− F (xk+1) +

1

2t
‖xk − x∗k‖

2]

≥ Exk [Ft(x
∗
k;xk)− Ft(xk+1;xk)] +

1

2t
‖xk − x∗k‖

2

≥ − 1

4t
‖xk − x∗k‖

2 +
1

2t
‖xk − x∗k‖

2

≥ t

4
‖Gt(xk)‖2 ,

59

where the second line follows from strong convexity of Ft(·;xk), the third from Lemma 2.3.2,

and the fourth from Lemma 2.6.3. Taking expectations of both sides, and using the tower

rule, we deduce

E[F (xk)− F (xk+1)] ≥ t

4
E[‖Gt(xk)‖2].

Summing up both sides, we deduce

min
j=0,...,N−1

t

4
E[‖Gt(xj)‖2] ≤ t

4N

N−1∑
j=0

E[‖Gt(xj)‖2]

≤ 1

N

N−1∑
j=0

E[F (xj)− F (xj+1)]

≤ F (x0)− inf F

N
,

as claimed.

It is clear from the proof that if the inner algorithmM satisfies (2.49) with the expectation

Exk omitted, then Theorem 2.6.4 holds with E omitted as well and with inf F replaced by

F ∗ := liminfk→∞ F (xi). In particular, let us suppose that we set t = µ−1 and let M

be the fast-gradient method (Algorithm 6) applied to the primal problem. Then in each

iteration k, we can set Lf = ‖∇c(xk)‖2
opLh and α = µ. Let us now determine γk and

τk. Using the inequality (1 +
√

α
2Lf

)−1 ≤ 1 −
√

α
2Lf

along with Theorem 2.6.1, we deduce

we can set γk =
Lf
4

and τk =
√

α
2Lf

for all indices k. Then each iteration of Algorithm 7

performs T =

⌈√
2‖∇c(xk)‖2opLh

µ
log
(
‖∇c(xk)‖2

opLh/µ
)⌉

iterations of the fast-gradient method,

Algorithm 6. Recall that each iteration of Algorithm 6 requires 8 basic operations. Taking

into account Theorem 7, we deduce that the overall scheme will produce a point x satisfying∥∥∥G 1
µ
(x)
∥∥∥ ≤ ε

after at most

8

⌈
4µ (F (x0)− F ∗)

ε2

⌉⌈√
2‖∇c‖2Lh

µ
log

(
‖∇c‖2Lh

µ

)⌉
(2.52)

60

basic operations. Thus the number of basic operations is on the order of

O

(√
‖∇c‖2 · Lh · µ · (F (x0)− F ∗)

ε2
log

(
‖∇c‖2Lh

µ

))
. (2.53)

Notice this estimate is better than (2.47), but only in terms of logarithmic dependence.

Before moving on, it is instructive to comment on the functional form of the linear conver-

gence guarantee in (2.49). The right-hand-side depends on the initial squared distance ‖z0−

x∗‖2. Convergence rates of numerous algorithms, on the other hand, are often stated with

the right-hand-side instead depending on the initial functional error Ft(z0;x) − inf
z
Ft(z;x).

In particular, this is the case for algorithms for finite sum problems discussed in Section 2.7,

such as SVRG [55] and SAGA [34], and their accelerated extensions [1, 47, 69]. The fol-

lowing easy lemma shows how any such algorithm can be turned into a linearly convergent

subscheme, in the sense of Definition 2.6.2, by taking a single extra prox-gradient step. We

will use this observation in Section 2.7, when discussing finite-sum problems.

Lemma 2.6.5. Consider an optimization problem having the convex additive composite form

(2.38). SupposeM is an algorithm for minz f
p(z) satisfying: there exist constants γ ≥ 0 and

τ ∈ (0, 1) so that on any input z0, the method M generates a sequence {zi}∞i=1 satisfying

E[fp(zi)− fp(z∗)] ≤ γ (1− τ)i (fp(z0)− fp(z∗)) for i = 1, . . . ,∞, (2.54)

where z∗ is a minimizer of fp. Define an augmented method M+ as follows: given input

z0, initialize M at the point proxp/Lf (z0− 1
Lf
∇f(z0)) and output the resulting points {zi}∞i=1.

Then the iterates generates by M+ satisfy

E[fp(zi)− fp(z∗)] ≤
γLf

2
(1− τ)i ‖z0 − z∗‖2 for i = 1, . . . ,∞,

Proof. Set ẑ := proxp/Lf (z0 − 1
Lf
∇f(z0)). Then convergence guarantees (2.54) ofM, with ẑ

in place of z0, read

E[fp(zi)− fp(z∗)] ≤ γ (1− τ)i (fp(ẑ)− fp(z∗)) for i = 1, . . . ,∞.

61

Observe the inequality fp(ẑ) ≤ f(z0)+ 〈∇f(z0), ẑ−z0〉+p(ẑ)+
Lf
2
‖ẑ−z0‖2. By definition, ẑ

is the minimizer of the function z 7→ f(z0) + 〈∇f(z0), z− z0〉+p(z) +
Lf
2
‖z− z0‖2, and hence

we deduce fp(ẑ) ≤ f(z0) + 〈∇f(z0), z∗− z0〉+ p(z∗) +
Lf
2
‖z∗− z0‖2 ≤ fp(z∗) +

Lf
2
‖z∗− z0‖2,

with the last inequality follows from convexity of f . The result follows.

2.6.3 Total cost of the smoothing strategy

The final ingredient is to replace h by a smooth approximation and then minimize the

resulting composite function by an inexact prox-linear method (Algorithms 5 or 7). Define

the smoothed composite function

F ν(x) := g(x) + hν(c(x)), (2.55)

where hν is the Moreau envelope of h. Recall from Lemma 2.2.1 the three key properties of

the Moreau envelope:

lip (hν) ≤ L, lip (∇hν) ≤
1

ν
,

and

0 ≤ h(z)− hν(z) ≤ L2ν

2
for all z ∈ Rm.

Indeed, these are the only properties of the smoothing we will use; therefore, in the anal-

ysis, any smoothing satisfying the analogous properties can be used instead of the Moreau

envelope.

Let us next see how to choose the smoothing parameter ν > 0 based on a target accuracy ε

on the norm of the prox-gradient ‖Gt(x)‖. Naturally, we must establish a relationship between

the step-sizes of the prox-linear steps on the original problem and its smooth approximation.

62

To distinguish between these two settings, we will use the notation

x+ = argmin
z

{
h
(
c(x) +∇c(x)(z − x)

)
+ g(z) + 1

2t
‖z − x‖2} ,

x̂ = argmin
z

{
hν
(
c(x) +∇c(x)(z − x)

)
+ g(z) + 1

2t
‖z − x‖2} ,

Gt(x) = t−1(x+ − x),

Gνt (x) = t−1(x̂− x).

Thus Gt(x) is the prox-gradient on the target problem (2.9) as always, while Gνt (x) is the

prox-gradient on the smoothed problem (2.55). The following theorem will motivate our

strategy for choosing the smoothing parameter ν.

Theorem 2.6.6 (Prox-gradient comparison). For any point x, the inequality holds:

‖Gt(x)‖ ≤ ‖Gνt (x)‖+

√
L2ν

2t
.

Proof. Applying Lemma 2.2.1 and strong convexity of the proximal subproblems, we deduce

Ft(x
+;x) ≤ Ft(x̂;x)− 1

2t

∥∥x̂− x+
∥∥2

≤
(
hν
(
c(x) +∇c(x)(x̂− x)

)
+ g(x̂) +

1

2t
‖x̂− x‖2

)
+
L2ν

2
− 1

2t

∥∥x̂− x+
∥∥2

≤
(
hν
(
c(x) +∇c(x)(x+ − x)

)
+ g(x+) +

1

2t

∥∥x+ − x
∥∥2
)

+
L2ν

2
− t−1

∥∥x̂− x+
∥∥2

≤ Ft(x
+;x) +

L2ν

2
− t−1

∥∥x̂− x+
∥∥2
.

Canceling out like terms, we conclude t−1 ‖x̂− x+‖2 ≤ L2ν
2

. The triangle inequality then

yields

t−1
∥∥x+ − x

∥∥ ≤ t−1 ‖x̂− x‖+

√
L2ν

2t
,

as claimed.‘

Fix a target accuracy ε > 0. The strategy for choosing the smoothing parameter ν is

now clear. Let us set t = 1
µ

and then ensure ε
2

=
√

L2ν
2t

by setting ν := ε2

2L3β
. Then by

Theorem 2.6.6, any point x satisfying ‖Gν1/µ(x)‖ ≤ ε
2

would automatically satisfy the desired

63

condition ‖G1/µ(x)‖ ≤ ε. Thus we must only estimate the cost of obtaining such a point

x. Following the discussion in Section 2.6.2, we can apply either of the Algorithms 5 or 7,

along with the fast-gradient method (Algorithm 6) for the inner subsolves, to the problem

minx F
ν(x) = g(x) + hν(c(x)). We note that for a concrete implementation, one needs the

following formulas, complementing Lemma 2.5.3.

Lemma 2.6.7. For any point x and real ν, t > 0, the following are true:

proxthν (x) = (ν
t+ν

) · x+ (t
t+ν

) · prox(t+ν)h(x) and ∇hν(x) = 1
ν
(x− proxνh(x)).

Proof. The expression ∇hν(x) = 1
ν
(x − proxνh(x)) was already recorded in Lemma 2.2.1.

Observe the chain of equalities

min
y

{
hν(y) +

1

2t
‖y − x‖2

}
= min

y
min
z

{
h(z) +

1

2ν
‖z − y‖2 +

1

2t
‖y − x‖2

}
(2.56)

= min
z

{
h(z) +

1

2(t+ ν)
‖z − x‖2

}
,

where the last equality follows by exchanging the two mins in (2.56). By the same token,

taking the derivative with respect to y in (2.56), we conclude that the optimal pair (y, z)

must satisfy the equality 0 = ν−1(y − z) + t−1(y − x). Since the optimal y is precisely

proxthν (x) and the optimal z is given by prox(t+ν)h(x), the result follows.

Let us apply Algorithm 5 with the fast-gradient dual subsolves, as described in Sec-

tion 2.6.2. Appealing to (2.46) with Lh = 1
ν

= 2L3β
ε2

and ε replaced by ε/2, we deduce that

the scheme will find a point x satisfying ‖G1/µ(x)‖ ≤ ε after at most

N (ε) ·
(

10 + 9

⌈
‖∇c‖L
ε

· log

(
8‖∇c‖4L2(1 +N (ε))4

β2

)⌉)

basic operations, where N (ε) :=

⌈
16µ

(
F (x0)−inf F+8+

ε2

4µ

)
ε2

⌉
. Hence the total cost is on the

order4 of

O
(
L2β‖∇c‖ · (F (x0)− inf F)

ε3
log

(
‖∇c‖2L3β(F (x0)− inf F)2

ε4

))
. (2.57)

4 Here, we use the assymptotic notation described in Remark 1 with ω = (‖∇c‖, L, β, F (x0)− inf F, 1/ε).

64

Similarly, let us apply Algorithm 7 with fast-gradient primal subsolves, as described in

Section 2.6.2. Appealing to (2.52), we deduce that the scheme will find a point x satisfying

‖G1/µ(x)‖ ≤ ε after at most

8

16µ

(
F (x0)− inf F + ε2

4µ

)
ε2

⌈

2‖∇c‖L
ε

log

(
2‖∇c‖2L2

ε2

)⌉

basic operations. Thus the cost is on the order4 of

O
(
L2β‖∇c‖ · (F (x0)− inf F)

ε3
log

(
‖∇c‖L
ε

))
. (2.58)

Notice that the two estimates (2.57) and (2.58) are identical up to a logarithmic dependence

on the problem data. To the best of our knowledge, these are the best-known efficiency

estimates of any first-order method for the composite problem class (2.9).

2.7 Finite sum problems

In this section, we extend the results of the previous sections on so-called “finite sum prob-

lems”, also often called “regularized empirical risk minimization”. More precisely, through-

out the section instead of minimizing a single composite function, we will be interested in

minimizing an average of m composite functions:

min
x

F (x) :=
1

m

m∑
i=1

hi(ci(x)) + g(x). (2.59)

In line with the previous sections, we make the following assumptions on the components of

the problem:

1. g is a closed convex function;

2. hi : R→ R are convex, and L-Lipschitz continuous;

3. ci : Rd → R are C1-smooth with the gradient map ∇ci that is β-Lipschitz continuous.

65

We also assume that we have available a real value, denoted ‖∇c‖, satisfying

‖∇c‖ ≥ sup
x∈dom g

max
i=1,...,m

‖∇ci(x)‖.

The main conceptual premise here is that m is large and should be treated as an explicit

parameter of the problem. Moreover, notice the Lipschitz data is stated for the individual

functional components of the problem. Such finite-sum problems are ubiquitous in machine

learning and data science, where m is typically the (large) number of recorded measurements

of the system. Notice that we have assumed that ci maps to the real line. This is purely for

notational convenience. Completely analogous results, as in this section, hold when ci maps

into a higher dimensional space.

Clearly, the finite-sum problem (2.59) is an instance of the composite problem class (2.9)

under the identification

h(zi, . . . , zm) :=
1

m

m∑
i=1

hi(zi) and c(x) := (c1(x), . . . , cm(x)). (2.60)

Therefore, given a target accuracy ε > 0, we again seek to find a point x with a small prox-

gradient ‖Gt(x)‖ ≤ ε. In contrast to the previous sections, by a basic operation we will mean

an individual gradient evaluation ∇ci(x). In other words, we would like to find a point x

with a small prox-gradient using as few individual gradient evaluations ∇ci(x) as possible.

Let us next establish baseline efficiency estimates by simply using the inexact prox-linear

schemes discussed in Sections 2.6.2 and 2.6.3. To this end, the following lemma derives

Lipschitz constants of h and ∇c from the problem data L and β. The proof is elementary

and we have placed it in Appendix A.1. Henceforth, we set lip (∇c) := supx 6=y
‖∇c(x)−∇c(y)‖op

‖x−y‖ .

Lemma 2.7.1 (Norm comparison). The inequalities hold:

lip (h) ≤ L/
√
m, lip (∇c) ≤ β

√
m, ‖∇c(x)‖op ≤

√
m

(
max

i=1,...,m
‖∇ci(x)‖

)
∀x.

If in addition each hi is C1-smooth with Lh-Lipschitz derivative t 7→ h′i(t), then the inequality,

lip (∇h) ≤ Lh/m, holds as well.

66

Remark 2 (Notational substitution). We will now apply the results of the previous sections

to the finite sum problem (2.59) with h and c defined in (2.60). In order to correctly interpret

results from the previous sections, according to Lemma 2.7.1, we must be mindful to replace

L with L/
√
m, β with β

√
m, ‖∇c‖ with

√
m‖∇c‖, and Lh with Lh/m. In particular, observe

that we are justified in setting µ := Lβ without any ambiguity. Henceforth, we will be using

this substitution routinely.

Baseline efficiency when hi are smooth:

Let us first suppose that hi are C1-smooth with Lh-Lipschitz derivative and interpret the

efficiency estimate (2.53). Notice that each gradient evaluation ∇c requires m individual

gradient evaluations ∇ci. Thus multiplying (2.53) by m and using Remark 2, the efficiency

estimate (2.53) reads:

O

m
√
‖∇c‖2 · Lh · L · β · (F (x0)− inf F)

ε2
log

(
‖∇c‖2Lh
Lβ

) (2.61)

individual gradient evaluations of ∇ci(·).

Baseline efficiency when hi are nonsmooth:

Now let us apply the smoothing technique described in Section 2.6.3. Multiplying the effi-

ciency estimate (2.58) by m and using Remark 2 yields:

O
(
m · L2β‖∇c‖ · (F (x0)− inf F)

ε3
log

(
‖∇c‖L
ε

))
(2.62)

individual gradient evaluations of ∇ci(·).

The two displays (2.61) and (2.62) serve as baseline efficiency estimates, in terms of

individual gradient evaluations ∇ci, for obtaining a point x satisfying ‖G1/µ(x)‖ ≤ ε. We

will now see that one can improve these guarantees in expectation. The strategy is perfectly

in line with the theme of the paper. We will replace h by a smooth approximation if necessary,

67

then apply an inexact prox-linear Algorithm 7, while approximately solving each subproblem

by an “(accelerated) incremental method”. Thus the only novelty here is a different scheme

for approximately solving the proximal subproblems.

2.7.1 An interlude: incremental algorithms

There are a number of popular algorithms for finite-sum problems, including SAG [99], SAGA

[34], SDCA [103], SVRG [55, 116], FINITO [33], and MISO [71]. All of these methods have

similar linear rates of convergence, and differ only in storage requirements and in whether

one needs to know explicitly the strong convexity constant. For the sake of concreteness, we

will focus on SVRG following [116]. This scheme applies to finite-sum problems

min
x

fp(x) :=
1

m

m∑
i=1

fi(x) + p(x), (2.63)

where p is a closed, α-strongly convex function (α > 0) and each fi is convex and C1-smooth

with `-Lipschitz gradient ∇fi. For notational convenience, define the condition number

κ := l/α. Observe that when each hi is smooth, each proximal subproblem indeed has this

form:

min
z

Ft(z;x) :=
1

m

m∑
i=1

hi

(
ci(x) + 〈∇ci(x), z − x〉

)
+ g(z) +

1

2t
‖z − x‖2. (2.64)

In Algorithm 8, we record the Prox-SVRG method of [116] for minimizing the function

(2.63).

The following theorem from [116, Theorem 3.1] summarizes convergence guarantees of

Prox-SVRG.

Theorem 2.7.2 (Convergence rate of Prox-SVRG). Algorithm 8, with the choices η = 1
10`

and J = d100κe, will generate a sequence {x̃s}s≥1 satisfying

E[fp(x̃s)− fp(x∗)] ≤ 0.9s(fp(x̃0)− fp(x∗)),

where x∗ is the minimizer of fp. Moreover, each step s requires m + 2 d100κe individual

gradient ∇fi evaluations.

68

Algorithm 8: The Prox-SVRG method [116]

Initialize : A point x̃0 ∈ Rd, a real η > 0, a positive integer J .

Step s: (s ≥ 1)

x̃ = x̃s−1;

ṽ = 1
m

∑m
i=1∇fi(x̃);

x0 = x̃

for j = 1, 2, . . . , J do

pick ij ∈ {1, . . . ,m} uniformly at random

vj = ṽ + (∇fij(xj−1)−∇fij(x̃))

xj = proxηp(xj−1 − ηvj)

end

x̃s = 1
J

∑J
j=1 xj

Thus Prox-SVRG will generate a point x with E[fp(x)− fp(x∗)] ≤ ε after at most

O
(

(m+ κ) log

(
fp(x̃0)− fp(x∗)

ε

))
(2.65)

individual gradient ∇fi evaluations. It was a long-standing open question whether there is

a method that improves the dependence of this estimate on the condition number κ. This

question was answered positively by a number of algorithms, including Catalyst [69], acceler-

ated SDCA [104], APPA [47], RPDG [56], and Katyusha [1]. For the sake of concreteness, we

focus only on one of these methods, Katyusha [1]. This scheme follows the same epoch struc-

ture as SVRG, while incorporating iterate history. We summarize convergence guarantees of

this method, established in [1, Theorem 3.1], in the following theorem.

Theorem 2.7.3 (Convergence rate of Katyusha). The Katyusha algorithm of [1] generates

a sequence of iterates {x̃s}s≥1 satisfying

E[fp(x̃s)− fp(x∗)]
fp(x̃0)− fp(x∗)

≤

4
(

1 +
√

1/(6κm)
)−2sm

, if m
κ
≤ 3

8

3(1.5)−s , if m
κ
> 3

8

69

where x∗ is the minimizer of fp. Moreover, each step s requires 3m individual gradient ∇fi
evaluations.5

To simplify the expression for the rate, using the inequality (1 + z)m ≥ 1 +mz observe(
1 +

√
1

6κm

)−2sm

≤
(

1 +
√

2m
3κ

)−s
.

Using this estimate in Theorem 2.7.3 simplifies the linear rate to

E[fp(x̃s)− fp(x∗)]
fp(x̃0)− fp(x∗)

≤ 4 ·max

{(
1 +

√
2m
3κ

)−s
, 1.5−s

}
.

Recall that each iteration of Katyusha requires 3m individual gradient∇fi evaluations. Thus

the method will generate a point x with E[fp(x)− fp(x∗)] ≤ ε after at most

O
((
m+

√
mκ

)
log

(
fp(x̃0)− fp(x∗)

ε

))
individual gradient∇fi evaluations. Notice this efficiency estimate is significantly better than

the guarantee (2.65) for Prox-SVRG only when m � κ. This setting is very meaningful in

the context of smoothing. Indeed, since we will be applying accelerated incremental methods

to proximal subproblems after a smoothing, the condition number κ of each subproblem can

be huge.

Improved efficiency estimates when hi are smooth:

Let us now suppose that each hi is C1-smooth with Lh-Lipschitz derivative h′i. We seek to

determine the efficiency of the inexact prox-linear method (Algorithm 7) that uses either

Prox-SVRG or Katyusha as the linearly convergent subscheme M. Let us therefore first

look at the efficiency of Prox-SVRG and Katyusha on the prox-linear subproblem (2.64).

Clearly we can set

` := Lh ·
(

max
i=1,...,m

‖∇ci(x)‖2

)
and α = t−1.

5The constants 4 and 3 are hidden in the O notation in [1, Theorem 3.1]. They can be explicitly verified
by following along the proof.

70

Notice that the convergence guarantees for Prox-SVRG and Katyusha are not in the standard

form (2.49). Lemma 2.6.5, however, shows that they can be put into standard form by taking

a single extra prox-gradient step in the very beginning of each scheme; we’ll call these slightly

modified schemes Prox-SVRG+ and Katyusha+. Taking into account Lemma 2.7.1, observe

that the gradient of the function z 7→ h(c(x) +∇c(x)(z−x)) is l-Lipschitz continuous. Thus

according to Lemma 2.6.5, Prox-SVRG+ and Katyusha+ on input z̃0 satisfy

E[Ft(z̃s;x)− Ft(z∗;x)] ≤ `

2
· 0.9s‖z̃0 − z∗‖2 for s = 1, . . . ,∞,

E[Ft(z̃s;x)− Ft(z∗;x)] ≤ 4`

2
·max

{(
1 +

√
2m
3κ

)−s
, 1.5−s

}
· ‖z̃0 − z∗‖2 for s = 1, . . . ,∞,

respectively, where z∗ is the minimizer of Ft(·;x).

We are now ready to compute the total efficiency guarantees. Setting t = 1/µ, Theo-

rem 2.6.4 shows that Algorithm 7 will generate a point x with

E
[
‖G1/µ(x)‖2

]
≤ ε2

after at most
⌈

4µ(F (x0)−inf F)
ε2

⌉
iterations. Each iteration k in turn requires at most

⌈
1

τk
log(4tγk)

⌉
≤
⌈

1

0.1
log
(

4 · 1

µ
· Lh · ‖∇c‖

2

2

)⌉
iterations of Prox-SVRG+ and at most⌈

1

τk
log(4tγk)

⌉
≤
⌈

max

{
3,

(
1 +

√
3Lh‖∇c‖2

2mµ

)}
log
(

4 · 1

µ
· 4 · Lh · ‖∇c‖2

2

)⌉
iterations of Katyusha+. Finally recall that each iteration s of Prox-SVRG+ and Katyusha+,

respectively, requires m + 2
⌈

100Lh‖∇c‖2
µ

⌉
and 3m evaluations of individual ∇ci. Hence the

overall efficiency in terms of the number of individual gradient evaluations ∇ci is on the

order of

O

((
µm+ Lh‖∇c‖2) · (F (x0)− inf F)

ε2
log

(
Lh · ‖∇c‖2

µ

))
(2.66)

71

when using Prox-SVRG+ and on the order of

O

(
µm+

√
µmLh‖∇c‖2

)
· (F (x0)− inf F)

ε2
log

(
Lh · ‖∇c‖2

µ

) (2.67)

when using Katyusha+. Notice that the estimate (2.67) is better than (2.66) precisely when

m� Lh‖∇c‖2
µ

.

Improved efficiency estimates when hi are nonsmooth:

Finally, let us now no longer suppose that hi are smooth in the finite-sum problem (2.59)

and instead apply the smoothing technique. To this end, observe the equality

hν(z) = inf
y

{
1

m

m∑
i=1

hi(yi) +
1

2ν
‖y − z‖2

}
=

m∑
i=1

(hi/m)ν(zi).

Therefore the smoothed problem in (2.55) is also a finite-sum problem with

min
x

1

m

m∑
i=1

m · (hi/m)ν(ci(x)) + g(x).

Thus we can can apply the convergence estimates we have just derived in the smooth setting

with hi(t) replaced by φi(t) := m·(hi/m)ν(t). Observe that φi is L-Lipschitz by Lemma 2.2.1,

while the derivative φ′i(t) = m ·ν−1(t−prox ν
m
hi

(t)) is Lipschitz with constant Lh := m
ν

. Thus

according to the recipe following Theorem 2.6.6, given a target accuracy ε > 0 for the norm

of the prox-gradient ‖G 1
µ
(x)‖, we should set

ν :=
mε2

2L3β
,

where we have used the substitutions dictated by Remark 2. Then Theorem 2.6.6 implies∥∥G1/µ(x)
∥∥ ≤ ∥∥Gν1/µ(x)

∥∥+
ε

2
for all x,

where
∥∥∥Gν1/µ(x)

∥∥∥ is the prox-gradient for the smoothed problem. Squaring and taking ex-

pectations on both sides, we can be sure E[
∥∥G1/µ(x)

∥∥2
] ≤ ε2 if we find a point x satisfying

72

E
[∥∥∥Gν1/µ(x)

∥∥∥2
]
≤ ε2

4
. Thus we must simply write the estimates (2.66) and (2.67) for the

smoothed problem in terms of the original problem data. Thus to obtain a point x satisfying

E[
∥∥G1/µ(x)

∥∥2
] ≤ ε2,

it suffices to perform

O
((

Lβm

ε2
+
L2β‖∇c‖

ε3
·min

{√
m,

L‖∇c‖
ε

})
(F (x0)− inf F) log

(
L‖∇c‖
ε

))
(2.68)

individual gradient ∇ci evaluations. The min in the estimate corresponds to choosing the

better of the two, Prox-SVRG+ and Katyusha+, in each proximal subproblem in terms of

their efficiency estimates. Notice that the 1/ε3 term in (2.68) scales only as
√
m. Therefore

this estimate is an order of magnitude better than our baseline (2.62), which we were trying

to improve. The caveat is of course that the estimate (2.68) is in expectation while (2.62) is

deterministic.

2.8 An accelerated prox-linear algorithm

Most of the paper thus far has focused on the setting when the proximal subproblems (2)

can only be approximately solved by first-order methods. On the other hand, in a variety

of circumstances, it is reasonable to expect to solve the subproblems to a high accuracy by

other means. For example, one may have available specialized methods for the proximal

subproblems, or interior-point points methods may be available for moderate dimensions d

and m, or it may be that case that computing an accurate estimate of ∇c(x) may already be

the bottleneck (see e.g. Example 2.3.5). In this context, it is interesting to see if the basic

prox-linear method can in some sense be “accelerated” by using inertial information. In this

section, we do exactly that.

We propose an algorithm, motivated by the work of Ghadimi-Lan [48], that is adaptive

to some natural constants measuring convexity of the composite function. This being said,

the reader should keep in mind a downside the proposed scheme: our analysis (for the first

73

time in the paper) requires the domain of g to be bounded. Henceforth, define

M := sup
x,y∈dom g

‖x− y‖

and assume it to be finite.

To motivate the algorithm, let us first consider the additive composite setting (2.10) with

c(·) in addition convex. Algorithms in the style of Nesterov’s second accelerated method (see

[80] or [109, Algorithm 1]) incorporate steps of the form vk+1 = proxtg (vk − t∇c(yk)). That

is, one moves from a point vk in the direction of the negative gradient −∇c(yk) evaluated

at a different point yk, followed by a proximal operation. Equivalently, after completing a

square one can write

vk+1 := argmin
z

{
c(yk) + 〈∇c(yk), z − vk〉+

1

2t
‖z − vk‖2 + g(z)

}
.

This is also the construction used by Ghadimi and Lan [48, Equation 2.37] for nonconvex

additive composite problems. The algorithm we consider emulates this operation. There is

a slight complication, however, in that the composite structure requires us to incorporate an

additional scaling parameter α in the construction. We use the following notation:

Fα(z; y, v) := g(z) +
1

α
· h
(
c(y) + α∇c(y)(z − v)

)
,

Ft,α(z; y, v) := Fα(z; y, v) +
1

2t
‖z − v‖2 ,

St,α(y, v) := argmin
z

Ft,α(z; y, v).

Observe the equality St,1(x, x) = St(x). In the additive composite setting, the mapping

St,α(y, v) does not depend on α and the definition reduces to

St,α(y, v) = argmin
z

{
c(y) + 〈∇c(y), z − v〉+

1

2t
‖z − v‖2 + g(z)

}
= proxtg (v − t∇c(y)) .

The scheme we propose is summarized in Algorithm 9.

Remark 3 (Interpolation weights). When L and β are unknown, one can instead equip

Algorithm 9 with a backtracking line search. A formal description and the resulting conver-

gence guarantees appear in Appendix A.2. We also note that instead of setting ak = 2
k+1

,

74

Algorithm 9: Accelerated prox-linear method

Initialize : Fix two points x0, v0 ∈ dom g and a real number µ̃ > µ.

Step k: (k ≥ 1) Compute

ak = 2
k+1

(2.69)

yk = akvk−1 + (1− ak)xk−1 (2.70)

xk = S1/µ̃(yk) (2.71)

vk = S 1
µ̃ak

, ak
(yk, vk−1) (2.72)

one may use the interpolation weights used in FISTA [4]; namely, the sequence ak may be

chosen to satisfy the relation 1−ak
a2k

= 1
a2k−1

, with similar convergence guarantees.

2.8.1 Convergence guarantees and convexity moduli

We will see momentarily that convergence guarantees of Algorithm 9 are adaptive to con-

vexity (or lack thereof) of the composition h ◦ c. To simplify notation, henceforth set

Φ := h ◦ c.

Weak convexity and convexity of the pair

It appears that there are two different convexity-like properties of the composite problem that

govern convergence of Algorithm 9. The first is weak-convexity. Recall from Lemma 2.4.2

that Φ is ρ-weakly convex for some ρ ∈ [0, µ]. Thus there is some ρ ∈ [0, µ] such that for any

points x, y ∈ Rd and a ∈ [0, 1], the approximate secant inequality holds:

Φ(ax+ (1− a)y) ≤ aΦ(x) + (1− a)Φ(y) + ρa(1− a)‖x− y‖2.

Weak convexity is a property of the composite function h ◦ c and is not directly related

75

to h nor c individually. In contrast, the algorithm we consider uses explicitly the composite

structure. In particular, it seems that the extent to which the “linearization” z 7→ h(c(y) +

∇c(y)(z − y)) lower bounds h(c(z)) should also play a role.

Definition 2.8.1 (Convexity of the pair). A real number r > 0 is called a convexity constant

of the pair (h, c) on a set U if the inequality

h
(
c(y) +∇c(y)(z − y)

)
≤ h(c(z)) +

r

2
‖z − y‖2 holds for all z, y ∈ U.

Inequalities (2.13) show that the pair (h, c) indeed has a convexity constant r ∈ [0, µ] on

Rd. The following relationship between convexity of the pair (h, c) and weak convexity of Φ

will be useful.

Lemma 2.8.2 (Convexity of the pair implies weak convexity of the composition).

If r is a convexity constant of (h, c) on a convex set U , then Φ is r-weakly convex on U .

Proof. Suppose r is a convexity constant of (h, c) on U . Observe that the subdifferential of

the convex function Φ and that of the linearization h
(
c(y) +∇c(y)(· − y)

)
coincide at y = x.

Therefore a quick argument shows that for any x, y ∈ U and v ∈ ∂Φ(y) we have

Φ(x) ≥ h(c(y) +∇c(y)(x− y))− r

2
‖x− y‖2 ≥ Φ(y) + 〈v, x− y〉 − r

2
‖x− y‖2.

The rest of the proof follows along the same lines as [30, Theorem 3.1]. We omit the

details.

Remark 4. The converse of the lemma is false. Consider for example setting c(x) = (x, x2)

and h(x, z) = x2 − z. Then the composition h ◦ c is identically zero and hence convex. On

the other hand, one can easily check that the pair (h, c) has a nonzero convexity constant.

Convergence guarantees

Henceforth, let ρ be a weak convexity constant of h ◦ c on dom g and let r be a convexity

constant of (h, c) on dom g. According to Lemma 2.8.2, we can always assume 0 ≤ ρ ≤ r ≤ µ.

We are now ready to state and prove convergence guarantees of Algorithm 9.

76

Theorem 2.8.3 (Convergence guarantees). Fix a real number µ̃ > µ and let x∗ be any point

satisfying F (x∗) ≤ F (xk) for all iterates xk generated by Algorithm 9. Then the efficiency

estimate holds:

min
j=1,...,N

∥∥G1/µ̃(yj)
∥∥2 ≤ 24µ̃2

µ̃− µ

(
µ̃ ‖x∗ − v0‖2

N(N + 1)(2N + 1)
+
M2(r + ρ

2
(N + 3))

(N + 1)(2N + 1)

)
.

In the case r = 0, the inequality above holds with the second summand on the right-hand-side

replaced by zero (even if M = ∞), and moreover the efficiency bound on function values

holds:

F (xN)− F (x∗) ≤ 2µ̃ ‖x∗ − v0‖2

(N + 1)2
.

Succinctly, setting µ̃ := 2µ, Theorem 2.8.3 guarantees the bound

min
j=1,...,N

∥∥G1/µ̃(yj)
∥∥2 ≤ O

(
µ2‖x∗ − v0‖2

N3

)
+
r

µ
· O
(
µ2M2

N2

)
+
ρ

µ
· O
(
µ2M2

N

)
.

The fractions 0 ≤ ρ
µ
≤ r

µ
≤ 1 balance the three terms, corresponding to different levels of

“convexity”.

Our proof of Theorem 2.8.3 is based on two basic lemmas, as is common for accelerated

methods [109].

Lemma 2.8.4 (Three-point comparison). Consider the point z := St,α(y, v) for some points

y, v ∈ Rd and real numbers t, α > 0. Then for all w ∈ Rd the inequality holds:

Fα(z; y, v) ≤ Fα(w; y, v) +
1

2t

(
‖w − v‖2 − ‖w − z‖2 − ‖z − v‖2) .

Proof. This follows immediately by noting that the function Ft,α(·; y, v) is strongly convex

with constant 1/t and z is its minimizer by definition.

77

Lemma 2.8.5 (Telescoping). Let ak, yk, xk, and vk be the iterates generated by Algorithm 9.

Then for any point x ∈ Rd and any index k, the inequality holds:

F (xk) ≤ akF (x)+(1− ak)F (xk−1) +
µ̃a2

k

2
(‖x− vk−1‖2 − ‖x− vk‖2)

− µ̃− µ
2
‖yk − xk‖2 + ρak‖x− xk−1‖2 +

ra2
k

2
‖x− vk−1‖2.

(2.73)

Proof. Notice that all the points xk, yk, and vk lie in dom g. From inequality (2.13), we have

F (xk) ≤ h
(
c(yk) +∇c(yk)(xk − yk)

)
+ g(xk) +

µ

2
‖xk − yk‖2 . (2.74)

Define the point wk := akvk + (1 − ak)xk−1. Applying Lemma 2.8.4 to xk = S1/µ̃,1(yk, yk)

with w = wk yields the inequality

h(c(yk) +∇c(yk)(xk − yk)) + g(xk) ≤ h(c(yk) +∇c(yk)(wk − yk))

+
µ̃

2
(‖wk − yk‖2 − ‖wk − xk‖2 − ‖xk − yk‖2)

+ akg(vk) + (1− ak)g(xk−1).

(2.75)

Note the equality wk − yk = ak(vk − vk−1). Applying Lemma 2.8.4 again with vk =

S 1
µ̃ak

,ak
(yk, vk−1) and w = x yields

h
(
c(yk) + ak∇c(yk)(vk − vk−1)

)
+ akg(vk) ≤ h

(
c(yk) + ak∇c(yk)(x− vk−1)

)
+ akg(x) +

µ̃a2
k

2

(
‖x− vk−1‖2 − ‖x− vk‖2 − ‖vk − vk−1‖2) . (2.76)

Define the point x̂ := akx + (1 − ak)xk−1. Taking into account ak(x − vk−1) = x̂ − yk, we

conclude

h(c(yk) +∇c(yk)(x̂− yk)) ≤ (h ◦ c)(x̂) +
r

2
‖x̂− yk‖2

≤ akh(c(x)) + (1− ak)h(c(xk−1))

+ ρak(1− ak)‖x− xk−1‖2 +
ra2

k

2
‖x− vk−1‖2.

(2.77)

Thus combining inequalities (2.74), (2.75), (2.76), and (2.77), and upper bounding 1−ak ≤ 1

and −‖wk − xk‖2 ≤ 0, we obtain

F (xk) ≤ akF (x) + (1− ak)F (xk−1) +
µ̃a2

k

2
(‖x− vk−1‖2 − ‖x− vk‖2)

− µ̃− µ
2
‖yk − xk‖2 + ρak‖x− xk−1‖2 +

ra2
k

2
‖x− vk−1‖2.

78

The proof is complete.

The proof of Theorem 2.8.3 now quickly follows.

Proof of Theorem 2.8.3. Set x = x∗ in inequality (2.73). Rewriting (2.73) by subtracting

F (x∗) from both sides, we obtain

F (xk)− F (x∗)

a2
k

+
µ̃

2
‖x∗ − vk‖2 ≤ 1− ak

a2
k

(
F (xk−1)− F (x∗)

)
+
µ̃

2
‖x∗ − vk−1‖2

+
ρM2

ak
+
rM2

2
− µ̃− µ

2a2
k

‖xk − yk‖2 . (2.78)

Using the inequality 1−ak
a2k
≤ 1

a2k−1
and recursively applying the inequality above N times, we

get

F (xN)− F (x∗)

a2
N

+
µ̃

2
‖x∗ − vN‖2 ≤ 1− a1

a2
1

(
F (x0)− F (x∗)

)
+
µ̃

2
‖x∗ − v0‖2

+ ρM2

(
N∑
j=1

1

aj

)
+
NrM2

2
− µ̃− µ

2

N∑
j=1

‖xj − yj‖2

a2
j

. (2.79)

Noting F (xN)− F (x∗) > 0 and a1 = 1, we obtain

µ̃− µ
2

N∑
j=1

‖xj − yj‖2

a2
j

≤ µ̃

2
‖x∗ − v0‖2 + ρM2

(
N∑
j=1

1

aj

)
+
NrM2

2
(2.80)

and hence

µ̃− µ
2

(
N∑
j=1

1

a2
j

)
min

j=1,...,N
‖xj − yj‖2 ≤ µ̃

2
‖x∗ − v0‖2 + ρM2

(
N∑
j=1

1

aj

)
+
NrM2

2
.

Using the definition ak = 2
k+1

, we conclude

N∑
j=1

1

a2
j

=
1

4

N∑
j=1

(j + 1)2 ≥ 1

4

N∑
j=1

j2 =
N(N + 1)(2N + 1)

24

and
N∑
j=1

1

aj
=

N∑
j=1

j + 1

2
=
N(N + 3)

4
.

79

With these bounds, we finally deduce

min
j=1,...N

‖xj − yj‖2 ≤ 24

µ̃− µ

(
µ̃ ‖x∗ − v0‖2

N(N + 1)(2N + 1)
+
M2(r + ρ

2
(N + 3)

(N + 1)(2N + 1)

)
,

thereby establishing the first claimed efficiency estimate in Theorem 2.8.3.

Finally suppose r = 0, and hence we can assume ρ = 0 by Lemma 2.8.2. Inequality (2.79)

then becomes

F (xN)− F (x∗)

a2
N

+
µ̃

2
‖x∗ − vN‖2 ≤ µ̃

2
‖x∗ − v0‖2 − µ̃− µ

2

N∑
j=1

‖xj − yj‖2

a2
j

.

Dropping terms, we deduce F (xN)−F (x∗)

a2N
≤ µ̃

2
‖x∗ − v0‖2 , and the claimed efficiency estimate

follows.

2.8.2 Inexact computation

Completely analogously, we can consider an inexact accelerated prox-linear method based

on approximately solving the duals of the prox-linear subproblems (Algorithm 10).

Theorem 2.8.6 (Convergence of inexact accelerated prox-linear method: near- stationarity).

Fix a real number µ̃ ≥ µ and let x∗ be any point satisfying F (x∗) ≤ F (xk) for iterates xk

generated by Algorithm 10. Then for any N ≥ 1, the iterates xk satisfy the inequality:

min
i=1,...,N

‖G1/µ̃(yj)‖2 ≤ 48µ̃2

µ̃− µ

‖x∗ − v0‖2 + 4L
∑N

j=1
2εj+δj
a2j

N(N + 1)(2N + 1)
+
M2(r + ρ

2
(N + 3))

(N + 1)(2N + 1)

 .

Moreover, in the case r = 0, the inequality above holds with the second summand on the

right-hand-side replaced by zero (even if M = ∞) and the following complexity bound on

function values holds:

F (xN)− F (x∗) ≤
2µ̃‖v0 − x∗‖2 + 8L

∑N
j=1

εj+δj
a2j

(N + 1)2
.

80

Algorithm 10: Inexact accelerated prox-linear method: near-stationarity

Initialize : Fix two points x0, v0 ∈ dom g and a real number µ̃ > µ.

Step k: (k ≥ 1) Compute

ak = 2
k+1

yk = akvk−1 + (1− ak)xk−1

- Find (xk, ζk) such that ‖ζk‖ ≤ εk and xk is the minimizer of the function

z 7→ g(z) + h
(
ζk + c(yk) +∇c(yk)(z − yk)

)
+
µ̃

2
‖z − yk‖2. (2.81)

- Find (vk, ξk) such that ‖ξk‖ ≤ δk and vk is the minimizer of the function

v 7→ g(v) +
1

ak
h
(
ξk + c(yk) + ak∇c(yk)(v − vk−1)

)
+
µ̃ak
2
‖v − vk−1‖2. (2.82)

The proof appears in Appendix A.1. Thus to preserve the rate in N of the exact accel-

erated prox-linear method in Theorem 2.8.3, it suffices to require the sequences
εj
a2j
,
δj
a2j

to be

summable. Hence we can set εj, δj ∼ 1
j3+q

for some q > 0.

Similarly, we can consider an inexact version of the accelerated prox-linear method based

on approximately solving the primal problems in function value. The scheme is recorded in

Algorithm 11.

Theorem 2.8.7 presents convergence guarantees of Algorithm 11. The statement of Theo-

rem 2.8.7 is much more cumbersome than the analogous Theorem 2.8.6. The only take-away

message for the reader is that to preserve the rate of the exact accelerated prox-linear method

in Theorem 2.8.3 in terms of N , it sufficies for the sequences {
√
iδi}, {iδi}, and {i2εi} to be

summable. Thus it suffices to take εi, δi ∼ 1
i3+q

for some q > 0.

The proof of Theorem 2.8.7 appears in Appendix A.1. Analysis of inexact accelerated

81

Algorithm 11: Accelerated prox-linear method: near-optimality

Initialize : Fix two points x0, v0 ∈ dom g, a real number µ̃ > Lβ, and two sequences

εi, δi ≥ 0 for i = 1, 2, . . . ,∞.

Step k: (k ≥ 1) Compute

ak = 2
k+1

(2.83)

yk = akvk−1 + (1− ak)xk−1 (2.84)

Set xk to be a εk-approximate minimizer of F1/µ̃(·; yk) (2.85)

Set vk to be a δk-approximate minimizer of F 1
µ̃ak

,ak
(·; yk, vk−1) (2.86)

methods of this type for additive convex composite problems has appeared in a variety of

papers, including [69, 100, 110]. In particular, our proof shares many features with that of

[100], relying on approximate subdifferentials and the recurrence relation [100, Lemma 1].

Theorem 2.8.7 (Convergence of the accelerated prox-linear algorithm: near-optimality).

Fix a real number µ̃ > µ, and let x∗ be any point satisfying F (x∗) ≤ F (xk) for iterates xk

generated by Algorithm 11. Then the iterates xk satisfy the inequality:

min
i=1,...,N

‖G1/µ̃(yi)‖2 ≤ 96µ̃2

µ̃− µ

(
µ̃‖x∗ − v0‖2

2N(N + 1)(2N + 1)
+ +

M2(r + ρ
2
(N + 3))

2(N + 1)(2N + 1)

+

∑N
i=1(δiai+3εi

a2i
) + AN

√
2µ̃
∑N

i=1

√
δi
ai

N(N + 1)(2N + 1)

)
with

AN :=
√

2
µ̃

N∑
i=1

√
δi
ai

+

‖x∗ − v0‖2 +
M2N(r+ ρ

2
(N+3))

µ̃
+ 2

µ̃

N∑
i=1

δiai+2εi
a2i

+ 2
µ̃

(
N∑
i=1

√
δi
ai

)2
1/2

.

Moreover, in the case r = 0, the inequality above holds with the second summand on the

right-hand-side replaced by zero (even if M = ∞), and the following complexity bound on

82

function values holds:

F (xN)− F (x∗) ≤
2µ̃ ‖x∗ − v0‖2 + 4

∑N
i=1

δiai+2εi
a2i

+ 4AN
√

2µ̃
∑N

i=1

√
δi
ai

(N + 1)2
.

Note that with the choices εi, δi ∼ 1
i3+q

, the quantity AN remains bounded. Consequently,

in the setting r = 0, the functional error F (xN)− F (x∗) is on the order of O(1/N2).

83

Chapter 3

4WD-CATALYST ACCELERATION
FOR GRADIENT-BASED NON-CONVEX OPTIMIZATION

Joint work with H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui [88]

Abstract. We introduce a generic scheme to solve nonconvex optimization problems us-

ing gradient-based algorithms originally designed for minimizing convex functions. When

the objective is convex, the proposed approach enjoys the same properties as the Catalyst

approach of Lin et al. [69]. When the objective is nonconvex, it achieves the best known

convergence rate to stationary points for first-order methods. Specifically, the proposed al-

gorithm does not require knowledge about the convexity of the objective; yet, it obtains an

overall worst-case efficiency of Õ(ε−2) and, if the function is convex, the complexity reduces

to the near-optimal rate Õ(ε−2/3). We conclude the paper by showing promising experi-

mental results obtained by applying the proposed approach to SVRG and SAGA for sparse

matrix factorization and for learning neural networks.

3.1 Introduction

We consider optimization problems of the form

min
x∈Rp

{f(x) := f0(x) + ψ(x)} , where f0(x) :=
1

n

n∑
i=1

fi(x) . (3.1)

Here, each function fi : Rp → R is smooth, the regularization ψ : Rp → R may be nonsmooth,

and R := R ∪ {∞}. By considering extended-real-valued functions, this composite setting

also encompasses constrained minimization by letting ψ be the indicator function of the con-

straints on x. Minimization of regularized empirical risk objectives of form (3.1) is central in

machine learning. Whereas a significant amount of work has been devoted to this composite

84

setting for convex problems, leading in particular to fast incremental algorithms [see, e.g.,

34, 56, 71, 99, 114, 116], the question of minimizing efficiently (3.1) when the functions fi

and ψ may be nonconvex is still largely open today.

Yet, nonconvex problems in machine learning are of high interest. For instance, the vari-

able x may represent the parameters of a neural network, where each term fi(x) measures

the fit between x and a data point indexed by i, or (3.1) may correspond to a nonconvex ma-

trix factorization problem (see Section 3.6). Besides, even when the data-fitting functions fi

are convex, it is also typical to consider nonconvex regularization functions ψ, for example

for feature selection in signal processing [52]. In this work, we address two questions from

nonconvex optimization:

1. How to apply a method for convex optimization to a nonconvex problem?

2. How to design an algorithm which does not need to know whether the objective function

is convex while obtaining the optimal convergence guarantee if the function is convex?

Several pioneering works attempted to transfer ideas from the convex world to the non-

convex one, see, e.g., [48, 49]. Our paper has a similar goal and studies the extension

of Nesterov’s acceleration for convex problems [79] to nonconvex composite ones. Unfor-

tunately, the concept of acceleration for nonconvex problems is unclear from a worst-case

complexity point of view: gradient descent requires O(ε−2) iterations to guarantee a gradi-

ent norm smaller than ε [20, 21]. Under a stronger assumption that the objective function

is C2-smooth, state-of-the-art methods [e.g., 18] achieve a marginal gain with complexity

O(ε−7/4 log(1/ε)), and do not appear to generalize to composite or finite-sum settings. For

this reason, our work fits within a broader stream of recent research on methods that do

not perform worse than gradient descent in the nonconvex case (in terms of worst-case com-

plexity), while automatically accelerating for minimizing convex functions. The hope when

applying such methods to nonconvex problems is to see acceleration in practice, by heuris-

tically exploiting convexity that is “hidden” in the objective (for instance, local convexity

near the optimum, or convexity along the trajectory of iterates).

85

The main contribution of this paper is a generic meta-algorithm, dubbed 4WD-Catalyst-

Automatic, which is able to use a gradient-based optimization methodM, originally designed

for convex problems, and turn it into an accelerated scheme that also applies to nonconvex

objective functions. The proposed 4WD-Catalyst-Automatic can be seen as a 4-Wheel-

Drive extension of Catalyst [69] to all optimization “terrains” (convex and nonconvex), while

Catalyst was originally proposed for convex optimization. Specifically, without knowing

whether the objective function is convex or not, our algorithm may take a method M

designed for convex optimization problems with the same structure as (3.1), e.g., SAGA [34],

SVRG [116], and applyM to a sequence of sub-problems such that it asymptotically provides

a stationary point of the nonconvex objective. Overall, the number of iterations of M to

obtain a gradient norm smaller than ε is Õ(ε−2) in the worst case, while automatically

reducing to Õ(ε−2/3) if the function is convex.1

Related work. Inspired by Nesterov’s acceleration method for convex optimization [81],

the first accelerated method performing universally well for nonconvex and convex problems

was introduced in [48]. Specifically, the work [48] addresses composite problems such as (3.1)

with n = 1, and, provided the iterates are bounded, it performs no worse than gradient

descent on nonconvex instances with complexity O(ε−2) on the gradient norm. When the

problem is convex, it accelerates with complexity O(ε−2/3). Extensions to accelerated Gauss-

Newton type methods were also recently developed in [39]. In a follow-up work [49], a new

scheme is proposed, which monotonically interlaces proximal gradient descent steps and

Nesterov’s extrapolation; thereby achieving similar guarantees as [48] but without the need

to assume the iterates to be bounded. Extensions when the gradient of ψ is only Hölder

continuous can also be devised.

In [67], a similar strategy is proposed, focusing instead on convergence guarantees under

the so-called Kurdyka- Lojasiewicz inequality—a property corresponding to polynomial-like

1In this section, the notation Õ only displays the polynomial dependency with respect to ε for the clarity
of exposition.

86

growth of the function, as shown by [7]. Our scheme is in the same spirit as these previous

papers, since it monotonically interlaces proximal-point steps (instead of proximal-gradient

as in [49]) and extrapolation/acceleration steps. A fundamental difference is that our method

is generic and accommodates inexact computations, since we allow the subproblems to be

approximately solved by any method we wish to accelerate.

By considering C2-smooth nonconvex objective functions f with Lipschitz continuous

gradient ∇f and Hessian ∇2f , Carmon et al. [18] propose an algorithm with complexity

O(ε−7/4 log(1/ε)), based on iteratively solving convex subproblems closely related to the

original problem. It is not clear if the complexity of their algorithm improves in the convex

setting. Note also that the algorithm proposed in [18] is inherently for C2-smooth minimiza-

tion and requires exact gradient evaluations. This implies that the scheme does not allow

incorporating nonsmooth regularizers and can not exploit finite sum structure.

Finally, a stochastic method related to SVRG [55] for minimizing large sums while au-

tomatically adapting to the weak convexity constant of the objective function is proposed

in [2]. When the weak convexity constant is small (i.e., the function is nearly convex), the

proposed method enjoys an improved efficiency estimate. This algorithm, however, does not

automatically accelerate for convex problems, in the sense that the overall rate is slower than

O(ε−2/3) in terms of target accuracy ε on the gradient norm.

Organization of the paper. Section 3.2 presents mathematical tools for non-convex and

non-smooth analysis, which are used throughout the paper. In Sections 3.3 and 3.4, we

introduce the main algorithm and important extensions, respectively. Finally, we present

experimental results on matrix factorization and training of neural networks in Section 3.6.

3.2 Tools for nonconvex and nonsmooth optimization

Convergence results for nonsmooth optimization typically rely on the concept of subdifferen-

tial, which does not admit a unique definition in a nonconvex context [9]. In this paper, we

circumvent this issue by focusing on a broad class of nonconvex functions known as weakly

87

convex or lower C2 functions, for which all these constructions coincide. Weakly convex

functions cover most of the interesting cases of interest in machine learning and resemble

convex functions in many aspects. In this section, we formally introduce them and discuss

their subdifferential properties.

Definition 3.2.1 (Weak convexity). A function f : Rp → R is ρ−weakly convex if for any

points x, y ∈ Rp and λ ∈ [0, 1], the approximate secant inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ρλ(1− λ) ‖x− y‖2 .

Notice that ρ-weak convexity with ρ = 0 is exactly the definition of a convex function.

An elementary algebraic manipulation shows that f is ρ-weakly convex if and only if the

function x 7→ f(x) + ρ
2
‖x‖2 is convex. In particular, a C1-smooth function f is ρ-weakly

convex if the gradient ∇f is ρ-Lipschitz, while a C2-smooth function f is ρ-weakly convex

if and only if ∇2f(x) � −ρI for all x. This closely resembles an equivalent condition for

C2-smooth and µ-strongly convex functions, namely ∇2f(x) � µI with µ > 0.

Useful characterizations of ρ-weakly convex functions rely on differential properties. Since

the functions we consider in the paper are nonsmooth, we use a generalized derivative con-

struction. We mostly follow the standard monograph on the subject by Rockafellar and Wets

[98].

Definition 3.2.2 (Subdifferential). Consider a function f : Rp → R and a point x with f(x)

finite. The subdifferential of f at x is the set

∂f(x) :={v ∈ Rp : f(y)≥f(x) + vT (y − x) + o(‖y − x‖) ∀y ∈ Rp}.

Thus, a vector v lies in ∂f(x) whenever the linear function y 7→ f(x) + vT (y − x) is a

lower-model of f , up to first-order around x. In particular, the subdifferential ∂f(x) of a

differentiable function f is the singleton {∇f(x)}, while for a convex function f it coincides

with the subdifferential in the sense of convex analysis [see 98, Exercise 8.8]. It is useful to

keep in mind that the sum rule, ∂(f + g)(x) = ∂f(x) +∇g(x), holds for any differentiable

function g.

88

We are interested in deriving complexity bounds on the number of iterations required by

a method M to guarantee

dist
(
0, ∂f(x)

)
≤ ε .

Recall when ε = 0, we are at a stationary point and satisfy first-order optimality conditions.

In our convergence analysis, we will also use the following differential characterization of

ρ-weakly convex functions, which generalize classical properties of convex functions. A proof

follows directly from Theorem 12.17 of [98] by taking into account that f is ρ-weakly convex

if and only if f + ρ
2
‖ · ‖2 is convex.

Theorem 3.2.3 (Differential characterization of ρ-weakly convex functions).

For any lower-semicontinuous function f : Rp → R, the following properties are equivalent:

1. f is ρ-weakly convex.

2. (subgradient inequality). For all x, y in Rp and v in ∂f(x), we have

f(y) ≥ f(x) + vT (y − x)− ρ

2
‖y − x‖2 .

3. (hypo-monotonicity). For all x, y in Rp, v in ∂f(x), and w in ∂f(y),

(v − w)T (x− y) ≥ −ρ‖x− y‖2.

Weakly convex functions have appeared in a wide variety of contexts, and under different

names. Some notable examples are globally lower-C2 [97], prox-regular [91], proximally

smooth functions [25], and those functions whose epigraph has positive reach [45].

3.3 The 4WD-Catalyst algorithm for non-convex optimization

We now present a generic scheme (Algorithm 12) for applying a convex optimization method

to minimize

min
x∈Rp

f(x), (3.2)

89

where f is only ρ-weakly convex. Our goal is to develop a unified framework that auto-

matically accelerates in convex settings. Consequently, the scheme must be agnostic to the

constant ρ.

3.3.1 4WD-Catalyst : a meta algorithm

At the center of our meta algorithm (Algorithm 12) are two sequences of subproblems ob-

tained by adding simple quadratics to f . The proposed approach extends the Catalyst

acceleration of [69] and comes with a simplified convergence analysis. We next describe in

detail each step of the scheme.

Two-step subproblems. The proposed acceleration scheme builds two main sequences

of iterates (x̄k)k and (x̃k)k, obtained from approximately solving two subproblems. These

subproblems are simple quadratic perturbations of the original problem f having the form:

min
x

{
fκ(x; y) := f(x) +

κ

2
‖x− y‖2

}
.

Here, κ is a regularization parameter and y is called the prox-center. By adding the quadratic,

we make the problem more “convex”: when f is non convex, with a large enough κ, the

subproblem will be convex; when f is convex, we improve the conditioning of the problem.

At the k-th iteration, given a previous iterate xk−1 and the extrapolation term vk−1, we

construct the two following subproblems.

1. Proximal point step. We first perform an inexact proximal point step with prox-

center xk−1:

x̄k ≈ argmin
x

fκ(x;xk−1) [Proximal-point step]

2. Accelerated proximal point step. Then we build the next prox-center yk as the

convex combination

yk = αkvk−1 + (1− αk)xk−1. (3.3)

90

Next, we use yk as a prox-center and update the next extrapolation term:

x̃k ≈ argmin
x

fκ(x; yk) [Accelerated proximal-point step]

vk = xk−1 + 1
αk

(x̃k − xk−1) [Extrapolation] (3.4)

where αk+1 ∈ (0, 1) is a sequence of coefficients satisfying (1− αk+1)/α2
k+1 = 1/αk

2.

Essentially, the sequences (αk)k, (yk)k, (vk)k are built upon the extrapolation principles

of Nesterov [81].

Picking the best. At the end of iteration k, we have at hand two iterates, resp. x̄k and

x̃k. Following [49], we simply choose the best of the two in terms of their objective values,

that is we choose xk such that

f(xk) ≤ min {f(x̄k), f(x̃k)} .

The proposed scheme blends the two steps in a synergistic way, allowing us to recover the

near-optimal rates of convergence in both worlds: convex and non-convex. Intuitively, when

x̄k is chosen, it means that Nesterov’s extrapolation step “fails” to accelerate convergence.

Stopping criterion for the subproblems. In order to derive complexity bounds, it is

important to properly define the stopping criterion for the proximal subproblems. When

the subproblem is convex, a functional gap like fκ(z;x) − infz fκ(z;x) may be used as a

control of the inexactness, as in [69]. Without convexity, this criterion cannot be used since

such quantities can not be easily bounded. In particular, first order methods seek points

whose subgradient is small. Since small subgradients do not necessarily imply small function

values in a non-convex setting, first order methods only test is for small subgradients. In

contrast, in the convex setting, small subgradients imply small function values; thus a first

order method in the convex setting can “test” for small function values. Hence, we cannot

use a direct application of Catalyst [69] which uses the functional gap as a stopping criteria.

Because we are working in the nonconvex setting, we include a stationarity stopping criteria.

91

Algorithm 12: 4WD-Catalyst

input: Fix a point x0 ∈ dom f , real numbers κ > 0, and an optimization method M.

initialization: α1 ≡ 1, v0 ≡ x0.

repeat for k = 1, 2, . . .

1. Choose x̄k using M such that

x̄k ≈ argmin
x

fκ(x;xk−1) (3.5)

where dist
(
0, ∂fκ(x̄k;xk−1)

)
< κ ‖x̄k − xk−1‖ and fκ(x̄k;xk−1) ≤ fκ(xk−1;xk−1).

2. Set

yk = αkvk−1 + (1− αk)xk−1. (3.6)

3. Choose x̃k using M such that

x̃k ≈ argmin
x

fκ(x; yk) (3.7)

where dist
(
0, ∂fκ(x̃k; yk)

)
< κ

k+1
‖x̃k − yk‖

4. Set

vk = xk−1 +
1

αk
(x̃k − xk−1). (3.8)

5. Pick αk+1 ∈ (0, 1) satisfying

1− αk+1

α2
k+1

=
1

α2
k

. (3.9)

6. Choose xk to be any point satisfying

f(xk) ≤ min {f(x̄k), f(x̃k)}. (3.10)

until the stopping criterion dist
(
0, ∂f(x̄k)

)
< ε

92

We propose to use jointly the following two types of stopping criteria:

1. Descent condition: fκ(z; y) ≤ fκ(y; y);

2. Adaptive stationary condition: dist
(
0, ∂fκ(z; y)

)
< κ ‖z − y‖.

Without the descent condition, the stationarity condition is insufficient for defining a good

stopping criterion because of the existence of local maxima in nonconvex problems. In

the nonconvex setting, local maxima and local minima satisfy the stationarity condition.

The descent condition ensures the iterates generated by the algorithm always decrease the

value of objective function f ; thus ensuring we move away from local maxima. The second

criterion, adaptive stationary condition, provides a flexible relative tolerance on termination

of algorithm used for solving the subproblems; a detailed analysis is forthcoming.

In 4WD-Catalyst , we use both the stationary condition and the descent condition as a

stopping criteria to produce the point x̄:

dist
(
0, ∂fκ(x̄k;xk−1)

)
< κ ‖x̄k − xk−1‖ and fκ(x̄k;xk−1) ≤ fκ(xk−1;xk−1). (3.11)

For the point x̃, our “acceleration” point, we use a modified stationary condition:

dist
(
0, ∂fκ(x̃k; yk)

)
<

κ

k + 1
‖x̃k − yk‖ . (3.12)

The k+ 1 factor guarantees 4WD-Catalyst accelerates for the convex setting. To be precise,

Equation (B.5) in the proofs of Theorem 3.3.1 and Theorem 3.3.2 uses the factor k + 1 to

ensure convergence. Note, we do not need the descent condition for x̃, as the functional

decrease in x̄ is enough to ensure the sequence {f(xk)}k≥1 is monotonically decreasing.

3.3.2 Convergence analysis.

We present here the theoretical properties of Algorithm 12. In this first stage, we do not take

into account the complexity of solving the subproblems (3.5) and (3.7). For the next two

theorems, we assume that the stopping criteria for the proximal subproblems are satisfied at

each iteration of Algorithm 12.

93

Theorem 3.3.1 (Outer-loop complexity for 4WD-Catalyst; non-convex case). For any κ > 0

and N ≥ 1, the iterates generated by Algorithm 12 satisfy

min
j=1,...,N

dist2
(
0, ∂f(x̄j)

)
≤ 8κ

N
(f(x0)− f ∗).

It is important to notice that this convergence result is valid for any κ and does not require

it to be larger than the weak convexity parameter. As long as the stopping criteria for the

proximal subproblems are satisfied, the quantities dist(0, ∂f(x̄j)) tend to zero. The proof is

inspired by that of inexact proximal algorithms [6, 51, 69] and appears in Appendix B.2.

If the function f turns out to be convex, the scheme achieves a faster convergence rate

both in function values and in stationarity:

Theorem 3.3.2 (Outer-loop complexity, convex case). If the function f is convex, then for

any κ > 0 and N ≥ 1, the iterates generated by Algorithm 12 satisfy

f(xN)− f(x∗) ≤ 4κ

(N + 1)2
‖x∗ − x0‖2 , (3.13)

and

min
j=1,...,2N

dist2
(
0, ∂f(x̄j)

)
≤ 32κ2

N(N + 1)2
‖x∗ − x0‖2 ,

where x∗ is any minimizer of the function f .

The proof of Theorem 3.3.2 appears in Appendix B.2. This theorem establishes a rate

of O(N−2) for suboptimality in function value and convergence in O(N−3/2) for the minimal

norm of subgradients. The first rate is optimal in terms of information-based complexity for

the minimization of a convex composite function [81, 86]. The second can be improved to

O(N−2 log(N)) through a regularization technique, if one knew in advance that the function

is convex and had an estimate on the distance of the initial point to an optimal solution [85].

Towards an automatically adaptive algorithm. So far, our analysis has not taken

into account the cost of obtaining the iterates x̄j and x̃j by the algorithmM. We emphasize

94

again that the two results above do not require any assumption on κ, which leaves us a

degree of freedom. In order to develop the global complexity, we need to evaluate the total

number of iterations performed by M throughout the process. Clearly, this complexity

heavily depends on the choice of κ, since it controls the magnitude of regularization we add

to improve the convexity of the subproblem. This is the point where a careful analysis is

needed, because our algorithm must adapt to ρ without knowing it in advance. The next

section is entirely dedicated to this issue. In particular, we will explain how to automatically

adapt the parameter κ (Algorithm 13).

3.4 The 4WD-Catalyst-Automatic algorithm

In this section, we work towards understanding the global efficiency of Algorithm 12, which

automatically adapts to the weak convexity parameter. For this, we must take into account

the cost of approximately solving the proximal subproblems to the desired stopping criteria.

We expect that once the subproblem becomes strongly convex, the given optimization method

M can solve it efficiently. For this reason, we first focus on the computational cost for solving

the sub-problems, before introducing a new algorithm with known worst-case complexity.

3.4.1 Solving the sub-problems efficiently

When κ is large enough, the subproblems become strongly convex; thus globally solvable.

Henceforth, we will assume thatM satisfies the following natural linear convergence assump-

tion.

Linear convergence of M for strongly-convex problems. We assume that for any

κ > ρ, there exist Aκ ≥ 0 and τκ ∈ (0, 1) so that the following hold:

1. For any prox-center y ∈ Rp and initial z0 ∈ Rp the iterates {zt}t≥1 generated byM on

the problem minz fκ(z; y) satisfy

dist2(0, ∂fκ(zt; y)) ≤ Aκ(1− τκ)t(fκ(z0; y)− f ∗κ(y)), (3.14)

95

where fκ(y)∗ := infz fκ(z; y). If the method M is randomized, we require the same

inequality to hold in expectation.

2. The rates τκ and the constants Aκ are increasing in κ.

Remark 5. The linear convergence we assume here for M differs from the one considered

by [69], which was given in terms of function values. However, if the problem is a com-

posite one, both points of view are near-equivalent, as discussed in Section B.1 and the

precise relationship is given in Appendix B.3. We choose the norm of the subgradient as our

measurement because the complexity analysis is easier.

Then, a straightforward analysis bounds the computational complexity to achieve an

ε-stationary point.

Lemma 3.4.1. Let us consider a strongly convex problem fκ(·; y) and a linearly convergent

method M generating a sequence of iterates {zt}t≥0. Define

T (ε) = inf{t ≥ 1, dist
(
0, ∂fκ(zt; y)

)
≤ ε}, where ε is the target accuracy; then,

1. If M is deterministic,

T (ε) ≤ 1

τκ
log

(
Aκ (fκ(z0; y)− f ∗κ(y))

ε2

)
.

2. If M is randomized, then

E [T (ε)] ≤ 1

τκ
log

(
Aκ (fκ(z0; y)− f ∗κ(y))

τκε2

)
.

see Lemma C.1 of [69].

As we can see, we only lose a factor in the log term by switching from deterministic

to randomized algorithms. For the sake of simplicity, we perform our analysis only for

deterministic algorithms and the analysis for randomized algorithms holds in the same way

in expectation.

96

Bounding the required iterations when κ > ρ and restart strategy. Recall that we

add a quadratic to f with the hope to make each subproblem convex. Thus, if ρ is known,

then we should set κ > ρ. In this first stage, we show that whenever κ > ρ, then the number

of inner calls to M can be bounded with a proper initialization. Consider the subproblem

min
x∈Rp

{
fκ(x; y) = f(x) +

κ

2
‖x− y‖2

}
, (3.15)

and define the initialization point z0 by

1. if f is smooth, then set z0 = y;

2. if f = f0 + ψ is composite, with f0 L-smooth, then set z0 = proxηψ(y − η∇f0(y)) with

η ≤ 1
L+κ

.

Theorem 3.4.2. Consider the subproblem (3.15) and suppose κ > ρ. Then initializing M

at the previous z0 generates a sequence of iterates (zt)t≥0 such that

1. in at most Tκ iterations where

Tκ =
1

τκ
log

(
8Aκ(L+ κ)

(κ− ρ)2

)
,

the output zT satisfies fκ(zT ; y) ≤ fκ(z0; y) (descent condition) and dist(0, ∂fκ(zT ; y)) ≤

κ ‖zT − y‖ (adaptive stationary condition);

2. in at most Sκ log(k + 1) iterations where

Sκ log(k + 1) =
1

τκ
log

(
8Aκ(L+ κ)(k + 1)2

(κ− ρ)2

)
,

the output zS satisfies dist(0, ∂fκ(zS; y)) ≤ κ
k+1
‖zS − y‖ (modified adaptive stationary

condition).

The proof is technical and is presented in Appendix B.4. The lesson we learn here is that

as soon as the subproblem becomes strongly convex, it can be solved in almost a constant

97

number of iterations. Herein arises a problem–the choice of the smoothing parameter κ. On

one hand, when f is already convex, we may want to choose κ small in order to obtain the

desired optimal complexity. On the other hand, when the problem is non convex, a small κ

may not ensure the strong convexity of the subproblems. Because of such different behavior

according to the convexity of the function, we introduce an additional parameter κcvx to

handle the regularization of the extrapolation step. Moreover, in order to choose a κ > ρ

in the nonconvex case, we need to know in advance an estimate of ρ. This is not an easy

task for large scale machine learning problems such as neural networks. Thus we propose an

adaptive step to handle it automatically.

3.4.2 4WD-Catalyst-Automatic: adaptation to weak convexity

We now introduce 4WD-Catalyst-Automatic, presented in Algorithm 13, which can auto-

matically adapt to the unknown weak convexity constant of the objective. The algorithm

relies on a procedure to automatically adapt to ρ, described in Algorithm 14.

The idea is to fix in advance a number of iterations T , letM run on the subproblem for

T iterations, output the point zT , and check if a sufficient decrease occurs. We show that

if we set T = Õ(τ−1
L), where the notation Õ hides logarithmic dependencies in L and AL,

where L is the Lipschitz constant of the smooth part of f ; then, if the subproblem were

convex, the following conditions would be guaranteed:

1. Descent condition: fκ(zT ;x) ≤ fκ(x;x);

2. Adaptive stationary condition: dist
(
0, ∂fκ(zT ;x)

)
≤ κ ‖zT − x‖ .

Thus, if either condition is not satisfied, then the subproblem is deemed not convex and

we double κ and repeat. The procedure yields an estimate of ρ in a logarithmic number of

increases; see Lemma B.4.3.

Relative stationarity and predefining S. One of the main differences of our approach

with the Catalyst algorithm of [69] is to use a pre-defined number of iterations, T and S,

98

Algorithm 13: 4WD-Catalyst-Automatic

input: Fix a point x0 ∈ dom f , real numbers κ0, κcvx > 0 and T, S > 0, and an

optimization method M.

initialization: α1 = 1, v0 = x0.

repeat for k = 1, 2, . . .

1. Compute

(x̄k, κk) = Auto-adapt (xk−1, κk−1, T).

2.

Compute yk = αkvk−1 + (1− αk)xk−1 and apply S log(k + 1) iterations of

M to find

x̃k ≈ argmin
x∈Rp

fκcvx(x, yk), (3.16)

by using the initialization strategy described below (3.15).

3. Update vk and αk+1 by

vk = xk−1 + 1
αk

(x̃k − xk−1) and αk+1 =

√
α4
k + 4α2

k − α2
k

2
.

4. Choose xk to be any point satisfying f(xk) = min{f(x̄k), f(x̃k)}.

until the stopping criterion dist
(
0, ∂f(x̄k)

)
< ε

for solving the subproblems. We introduce κcvx, a M dependent smoothing parameter and

set it in the same way as the smoothing parameter in [69]. The automatic acceleration of

our algorithm when the problem is convex is due to extrapolation steps in Step 2-3 of 4WD-

Catalyst. We show that if we set S = Õ
(
τ−1
κcvx

)
, where Õ hides logarithmic dependencies in

L, κκ, and Aκcvx , then we can be sure that, for convex objectives,

dist
(
0, ∂fκcvx(x̃k; yk)

)
<

κcvx

k + 1
‖x̃k − yk‖ . (3.17)

99

This relative stationarity of x̃k, including the choice of κcvx, shall be crucial to guarantee that

the scheme accelerates in the convex setting. An additional k + 1 factor appears compared

to the previous adaptive stationary condition because we need higher accuracy for solving

the subproblem to achieve the accelerated rate in 1/
√
ε.

We shall see in the experiments that our strategy of predefining T and S works quite

well. The theoretical bounds we derive are, in general, too conservative; we observe in our

experiments that one may choose T and S significantly smaller than the theory suggests and

still retain the stopping criteria.

Algorithm 14: Auto-adapt (y, κ, T)

input: y ∈ Rp, method M, κ > 0, number of iterations T .

Repeat Compute

zT ≈ argmin
z∈Rp

fκ(z; y).

by running T iterations of M by using the initialization strategy described

below (3.15).

If fκ(zT ; y) > fκ(y; y) or dist(∂fκ(zT ; y), 0) > κ ‖zT − y‖,

then go to repeat with κ→ 2κ.

else go to output.

output (zT , κ).

To derive the global complexity results for 4WD-Catalyst-Automatic that match optimal

convergence guarantees, we make a distinction between the regularization parameter κ in

the proximal point step and in the extrapolation step. For the proximal point step, we apply

Algorithm 14 to adaptively produce a sequence of κk initializing at κ0 > 0, an initial guess

of ρ. The resulting x̄k and κk satisfy both the following inequalities:

dist
(
0, ∂fκk(x̄k;xk−1)

)
< κk ‖x̄k − xk‖ and fκk(x̄k;xk−1) ≤ fκk(xk−1;xk−1). (3.18)

For the extrapolation step, we introduce the parameter κcvx which essentially depends on

the Lipschitz constant L. The choice is the same as the smoothing parameter in [69] and

depends on the method M. With a similar predefined iteration strategy, the resulting x̃k

100

satisfies the following inequality if the original objective is convex,

dist
(
0, ∂fκcvx(x̃k; yk)

)
<

κcvx

k + 1
‖x̃k − yk‖ . (3.19)

3.4.3 Convergence analysis

Let us next postulate that T and S are chosen large enough to guarantee that x̄k and x̃k

satisfy conditions (3.18) and (3.19) for the corresponding subproblems, and see how the outer

algorithm complexity resembles the guarantees of Theorem 3.3.1 and Theorem 3.3.2. The

main technical difference is that κ changes at each iteration k, which requires keeping track

of the effects of κk and κcvx on the proof.

Theorem 3.4.3 (Outer-loop complexity, 4WD-Catalyst-Automatic). Fix real constants

κ0, κcvx > 0, and x0 ∈ dom f . Set κmax := maxk≥1 κk. Suppose that the number of iterations

T is such that x̄k satisfies (3.18). Define f ∗ := limk→∞ f(xk). Then for any N ≥ 1, the

iterates generated by Algorithm 13 satisfy,

min
j=1,...,N

dist2
(
0, ∂f(x̄j)

)
≤ 8κmax

N
(f(x0)− f ∗).

If in addition the function f is convex and Sk is chosen so that x̃k satisfies (3.19), then

min
j=1,...,2N

dist2
(
0, ∂f(x̄j)

)
≤ 32κmaxκcvx
N(N + 1)2

‖x∗ − x0‖2 ,

and

f(xN)− f(x∗) ≤ 4κcvx
(N + 1)2

‖x∗ − x0‖2 , (3.20)

where x∗ is any minimizer of the function f .

Inner-loop Complexity In light of Theorem 3.4.3, we must now understand how to

choose T and S as small as possible, while guaranteeing that x̄k and x̃k satisfy (3.18) and

(3.19) hold for each k. The quantities T and S depend on the methodM’s convergence rate

parameter τκ which only depends on L and κ. For example, the convergence rate parameter

τ−1
κ = (L+κ)/κ for gradient descent and τ−1

κ = n+(L+κ)/κ for SVRG. The values of T and

101

S must be set beforehand without knowing the true value of the weak convexity constant ρ.

Using Theorem 3.4.2, we assert the following choices for T and S.

Theorem 3.4.4 (Inner complexity for 4WD-Catalyst-Automatic : determining the values

T and S). Suppose the stopping criteria are (3.18) and (3.19) as in in Theorem 3.4.3, and

choose T and S in Algorithm 13 to be the smallest numbers satisfying

T ≥ 1

τL
log

(
40A4L

L

)
,

and

S log(k + 1) ≥ 1

τκcvx
log

(
8Aκcvx(κcvx + L)(k + 1)2

κ2
cvx

)
,

for all k. In particular,

T = O

(
1

τL
log (A4L, L)

)
,

S = O

(
1

τκcvx
log(Aκcvx , L, κcvx)

)
.

Then κmax ≤ 4L and the following hold for any index k ≥ 1:

1. Generating x̄k in Algorithm 13 requires at most Õ
(
τ−1
L

)
iterations of M;

2. Generating x̃k in Algorithm 13 requires at most Õ
(
τ−1
κcvx

)
iterations of M.

where Õ hides universal constants and logarithmic dependencies on k, L, κcvx, AL, and Aκcvx.

Appendix B.4 is devoted to proving Theorem 3.4.4, but we outline below the general

procedure and state the two main propositions (see Proposition 3.4.5 and Proposition 3.4.6).

We summarize the proof of Theorem 3.4.4 as followed:

1. When κ > ρ + L, we compute the number of iterations of M to produce a point

satisfying (3.18). Such a point will become x̄k.

2. When the function f is convex, we compute the number of iterations ofM to produce

a point which satisfies the (3.19) condition. Such a point will become the point x̃k.

102

3. We compute the smallest number of times we must double κ0 until it becomes larger

than ρ+ L. Thus eventually the condition 4L ≥ κ > ρ+ L will occur.

4. We always set the number of iterations of M to produce x̄k and x̃k as in Step 1 and

Step 2, respectively, regardless of whether fκ(·;xk) is convex or f is convex.

The next proposition shows that Auto-adapt terminates with a suitable choice for x̄k after

T number of iterations.

Proposition 3.4.5 (Inner complexity for x̄k). Suppose ρ+ L < κ ≤ 4L. By initializing the

method M using the strategy suggested in Algorithm 13 for solving

min
z

{
fκ(z;x) := f(z) +

κ

2
‖z − x‖2

}
we may run the method M for at least T iterations, where

T ≥ 1

τL
log

(
40A4L

L

)
;

then, the output zT satisfies fκ(zT ;x) ≤ fκ(x;x) and dist
(
0, ∂fκ(zT ;x)

)
≤ κ ‖zT − x‖.

Under the additional assumption that the function f is convex, we produce a point with

(3.19) when the number of iterations S is chosen sufficiently large.

Proposition 3.4.6 (Inner-loop complexity for x̃k). Consider the methodM with the initial-

ization strategy suggested in Algorithm 13 for minimizing fκcvx(·; yk) with linear convergence

rates of the form (3.14). Suppose the function f is convex. If the number of iterations of M

is greater than

S = O

(
1

τκcvx
log(Aκcvx , L, κcvx)

)
such that

S log(k + 1) ≥ 1

τκcvx
log

(
8Aκcvx(κcvx + L)(k + 1)2

κ2
cvx

)
, (3.21)

then, the output z̃S = x̃k satisfies ‖∂fκcvx(z̃S)‖ < κcvx
k+1
‖z̃Sk − yk‖ for all k ≥ 1.

103

We can now derive global complexity bounds by combining Theorem 3.4.3 and Theo-

rem 3.4.4, and a good choice for the constant κcvx.

Theorem 3.4.7 (Global complexity bounds for 4WD-Catalyst-Automatic). Choose Choose

T and S as in Theorem 3.4.4. We let Õ hide universal constants and logarithmic dependen-

cies in AL, Aκcvx, L, ε, κ0, κcvx, and ‖x∗ − x0‖2. Then, the following statements hold.

1. Algorithm 13 generates a point x satisfying dist
(
0, ∂f(x)

)
≤ ε after at most

Õ

((
τ−1
L + τ−1

κcvx

)
· L(f(x0)− f ∗)

ε2

)
iterations of the method M.

2. If f is convex, then Algorithm 13 generates a point x satisfying dist
(
0, ∂f(x)

)
≤ ε after

at most

Õ

((
τ−1
L + τ−1

κcvx

)
· L

1/3 (κcvx‖x∗ − x0‖2)
1/3

ε2/3

)
iterations of the method M.

3. If f is convex, then Algorithm 13 generates a point x satisfying f(x)− f ∗ ≤ ε after at

most

Õ

((
τ−1
L + τ−1

κcvx

)
·
√
κcvx‖x∗ − x0‖2

√
ε

)
iterations of the method M.

Remark 6. In general, the linear convergence parameter ofM, τκ, depends on the condition

number of the problem fκ. Here, τL and τκcvx are precisely given by plugging in κ = L and

κcvx respectively into τκ. To clarify, let M be SVRG, τκ is given by 1
n+κ+L

κ

which yields

τL = 1/(n+ 2). A more detailed computation is given in Table 3.5.1. For all the incremental

methods we considered, these parameters τL and τκ are on the order of 1/n.

Remark 7. If M is a first order method, the convergence guarantee in the convex setting

is near-optimal, up to logarithmic factors, when compared to O(1/
√
ε) [69, 114]. In the

104

non-convex setting, our approach matches, up to logarithmic factors, the best known rate

for this class of functions, namely O(1/ε2) [21, 20]. Moreover, our rates dependence on the

dimension and Lipschitz constant equals, up to log factors, the best known dependencies in

both the convex and nonconvex setting. These logarithmic factors may be the price we pay

for having a generic algorithm.

3.5 Applications to Existing Algorithms

We now show how to accelerate existing algorithms M and compare the convergence guar-

anties before and after 4WD-Catalyst-Automatic. In particular, we focus on the gradient

descent algorithm and on the incremental methods SAGA and SVRG. For all the algorithms

considered, we state the convergence guaranties in terms of the total number of iterations (in

expectation, if appropriate) to reach an accuracy of ε; in the convex setting, the accuracy is

stated in terms of functional error, f(x)− inf f < ε and in the nonconvex setting, the appro-

priate measure is stationarity, namely dist(0, ∂f(x)) < ε. All the algorithms considered have

formulations for the composite setting with analogous convergence rates. Table 3.5 presents

convergence rates for SAGA [34], (prox) SVRG [116], and gradient descent (FG).

The original SVRG [116] has no guarantees for nonconvex functions; however, there is a

nonconvex extension of SVRG in [94]. Their convergence rate achieves a better dependance

on n compared to our results, namely O(n
2/3L
ε2

). This is done by performing a strategy of mini-

batching. In order to achieve a similar dependency on n, we require a tighter bound for SVRG

with minibatching applied to µ-strongly convex problems, namely O
((
n2/3 + L

µ

)
log
(

1
ε

))
.

To the best of our knowledge, such a rate is currently unknown.

3.5.1 Practical parameters choices and convergence rates

The smoothing parameter κcvx drives the convergence rate of 4WD-Catalyst-Automatic in

the convex setting. To determine κcvx, we pretend ρ = 0 and compute the global complexity

of our scheme. As such, we end up with the same complexity result as Catalyst [69]. Following

their work, the rule of thumb is to maximize the ratio τκ/
√
L+ κ for convex problems. On

105

Nonconvex Convex

Original 4WD-Catalyst-Auto. Original 4WD-Catalyst-Auto.

FG O
(
n L
ε2

)
Õ
(
n L
ε2

)
O
(
nL
ε

)
Õ
(
n
√

L
ε

)
SVRG [116] not avail. Õ

(
n L
ε2

)
not avail. Õ

(√
n
√

L
ε

)
SAGA [34] not avail. Õ

(
n L
ε2

)
O
(
nL
ε

)
Õ
(√

n
√

L
ε

)
Table 3.1: Comparison of rates of convergence, before and after the 4WD-Catalyst-

Automatic , resp. in the non-convex and convex cases. For the comparision, in the convex

case, we only present the number of iterations to obtain a point x satisfying f(x)− f ∗ < ε.

In the non-convex case, we show the number of iterations to obtain a point x satisfying

dist(0, ∂f(x)) < ε.

the other hand, the choice of κ0 is independent of M; it is an initial lower estimate for

the weak convexity constant ρ. In practice, we typically choose κ0 = κcvx; For incremental

approaches a natural heuristic is also to choose S = T = n, meaning that S iterations ofM

performs one pass over the data. In Table 3.5.1, we present the values of κcvx used for various

algorithms, as well as other quantities that are useful to derive the convergence rates.

Full gradient method. A first illustration is the algorithm obtained when accelerating

the regular “full” gradient (FG). Here, the optimal choice for κcvx is L. In the convex setting,

we get an accelerated rate of O(n
√
L/ε log(1/ε)) which agrees with Nesterov’s accelerated

variant (AFG) up to logarithmic factors. On the other hand, in the nonconvex setting, our

approach achieves no worse rate than O(nL/ε2 log(1/ε)), which agrees with the standard

gradient descent up to logarithmic factors. We note that under stronger assumptions, namely

C2-smoothness of the objective, the accelerated algorithm in [19] achieves the same rate

106

as (AFG) for the convex setting and O(ε−7/4 log(1/ε)) for the nonconvex setting. Their

approach, however, does not extend to composite setting nor to stochastic methods. Our

marginal loss is the price we pay for considering a much larger class of functions.

Randomized incremental gradient. We now consider randomized incremental gradient

methods such as SAGA [34] and (prox) SVRG [116]. Here, the optimal choice for κcvx is

O(L/n). Under the convex setting, we achieve an accelerated rate of O(
√
n
√
L/ε log(1/ε)).

A direct application of SVRG and SAGA have no convergence guarantees in the non-convex

setting. With our approach, the resulting algorithm matches the guarantees for FG up to

log factors.

Variable Description GD SVRG SAGA

1/τL
linear convergence parameter with

κ = L
2 n+ 2 4n

κcvx

smoothing parameter for convex

setting
L L/(n− 1) 3L/(4n− 3)

1/τκcvx
linear convergence parameter with

κcvx

2 2n 4n

A4L

constant from the convergence rate

of M
8L 8L 8Ln

Table 3.2: Values of various quantities that are useful to derive the convergence rate of the

different optimization methods.

3.5.2 Detailed derivation of convergence rates

Using the values of Table 3.5.1, we may now specialize our convergence results to different

methods.

107

Gradient descent. The number of iterations in the inner loop are

T ≥ 2 log(320)

S log(k + 1) ≥ 2 log
(
64(k + 1)2

)
The global complexity for gradient descent is

1. Algorithm 13 will generate a point x satisfying dist
(
0, ∂f(x)

)
≤ ε after at most

O

[
nL(f(x0)− f ∗)

ε2
· log

(
L2(f(x0)− f ∗)2

ε4

)
+ n log

(
L

κ0

)]
gradient computations.

2. If f is convex, then Algorithm 13 will generate a point x satisfying dist
(
0, ∂f(x)

)
≤ ε

after at most

O

[
nL2/3 ‖x0 − x∗‖2/3

ε2/3
· log

(
L4/3 ‖x0 − x∗‖4/3

ε4/3

)
+ n log

(
L

κ0

)]

gradient computations.

3. If f is convex, then Algorithm 13 will generate a point x satisfying f(x)− f ∗ ≤ ε after

at most

O

[
n
√
L ‖x∗ − x0‖√

ε
· log

(
L ‖x0 − x∗‖2

ε

)
+ n log

(
L

κ0

)]
gradient computations.

SVRG. For SVRG, the number of iterations in the inner loop are

T ≥ (n+ 2) log(320)

S log(k + 1) ≥ 2n log
(
64 · n2 · (k + 1)2

)
.

The global complexity for SVRG when n is sufficiently large is

108

1. Algorithm 13 will generate a point x satisfying dist
(
0, ∂f(x)

)
≤ ε after at most

O

[
nL(f(x0)− f ∗)

ε2
· log

(
n2L2(f(x0)− f ∗)2

ε4

)
+ n log

(
L

κ0

)]
gradient computations.

2. If f is convex, then Algorithm 13 will generate a point x satisfying dist
(
0, ∂f(x)

)
≤ ε

after at most

O

[
n2/3L2/3 ‖x∗ − x0‖2/3

ε2/3
log

(
n4/3L4/3 ‖x∗ − x0‖4/3

ε4/3

)
+ n2/3 log

(
L

κ0

)]

gradient computations.

3. If f is convex, then Algorithm 13 will generate a point x satisfying f(x)− f ∗ ≤ ε after

at most

O

[√
nL ‖x∗ − x0‖√

ε
· log

(
nL ‖x0 − x∗‖2

ε

)
+
√
n log

(
L

κ0

)]
gradient computations.

SAGA We observe that the variables for SAGA are the same as for SVRG up to a mul-

tiplicative factors. Therefore, the global complexities results for SAGA are, up to constant

factors, the same as SVRG.

3.6 Experiments

We investigate the performance of 4WD-Catalyst-Automatic in two standard non-convex

problems in machine learning. We report experimental results of 4WD-Catalyst-Automatic

when applied to two different algorithms: SVRG [116] and SAGA [34]. We compare the

following algorithms:

• Nonconvex SVRG/SAGA [94]: stepsize η = 1/Ln2/3;

• Convex SVRG/SAGA [34, 116]: stepsize η = 1/2L;

109

• 4WD-Catalyst SVRG/SAGA: stepsize η = 1/2L.

The original version of SVRG (resp. SAGA), convex SVRG (resp. SAGA), was designed

for minimizing convex objectives. We report their results, while there is no theoretical

guarantee on their behavior when venturing into nonconvex terrains. We also report the

results of recently proposed variants, Nonconvex SVRG/SAGA, designed for minimizing

nonconvex objectives. The proposed algorithms 4WD-Catalyst SVRG and 4WD-Catalyst

SAGA enjoy the strong theoretical guarantees stated in Sec. 3.

Parameter settings We start from an initial estimate of the Lipschitz constant L and

use the theoretically recommended κ0 = κcvx = 2L/n. The number of inner iterations is

to T = S = n in all experiments, which boils down to making one pass at most over the

data for solving each sub-problem. We simply drop the log(k) dependency while solving the

subproblem in (3.16). These choices turn out to be justified a posteriori, as both SVRG

and SAGA have a much better convergence rate in practice than the theoretical rate derived

from a worst-case analysis. Indeed, in all experiments, one pass over the data to solve each

sub-problem is enough to guarantee sufficient descent.

Sparse matrix factorization a.k.a. dictionary learning. Dictionary learning con-

sists of representing a dataset X = [x1, · · · , xn] ∈ Rm×n as a product X ≈ DA, where D

in Rm×p is called a dictionary, and A in Rp×n is a sparse matrix. The classical non-convex

formulation [see 72] is

min
D∈C,A∈Rp×n

n∑
i=1

1

2
‖xi −Dαi‖2

2 + ψ(αi),

where A = [α1 · · ·αn] carries the decomposition coefficients of signals x1 · · ·xn, ψ is a sparsity-

inducing regularization and C is chosen as the set of matrices whose columns are in the `2-ball.

An equivalent point of view is the finite-sum problem minD∈C
1
n

∑n
i=1 fi(D) with

fi(D) := min
α∈Rp

1

2
‖xi −Dα‖2

2 + ψ(α). (3.22)

110

0 10 20 30 40 50 60 70 80 90 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of iterations

F
u

n
c

ti
o

n
 v

a
lu

e

Matrix factorization, n=1000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 10 20 30 40 50 60 70 80 90 100
0.48

0.5

0.52

0.54

0.56

0.58

0.6

Number of iterations

F
u

n
c

ti
o

n
 v

a
lu

e

Matrix factorization, n=10000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 10 20 30 40 50 60 70 80 90 100
0.46

0.47

0.48

0.49

0.5

0.51

0.52

Number of iterations

F
u

n
c

ti
o

n
 v

a
lu

e

Matrix factorization, n=100000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 10 20 30 40 50 60 70 80 90 100
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Matrix factorization, n=1000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 10 20 30 40 50 60 70 80 90 100
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Matrix factorization, n=10000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 10 20 30 40 50 60 70 80 90 100
−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Matrix factorization, n=100000

nonconvex svrg
convex svrg
4wd−catalyst svrg

Figure 3.1: Dictionary learning experiments using SVRG. We plot the function value (top)

and the subgradient norm (bottom). From left to right, we vary the size of dataset from

n = 1 000 to n = 100 000.

We consider the elastic-net regularization ψ(α) = µ
2
‖α‖2 + λ‖α‖1 of [119], which has a

sparsity-inducing effect, and report the corresponding results in Figures 3.1 and 3.2, learning

a dictionary in Rm×p with p = 256 elements, on a set of whitened normalized image patches

of size m = 8×8. Parameters are standard ones in this literature [72]—that is, a small value

µ= 1e− 5, and λ= 0.25, leading to sparse matrices A (on average ≈ 4 non-zero coefficients

per column of A). Note that our implementations are based on the open-source SPAMS

toolbox [73].2

Neural networks. We consider now simple binary classification problems for learning

neural networks. Assume that we are given a training set {ai, bi}ni=1, where the variables

bi in {−1,+1} represent class labels, and ai in Rp are feature vectors. The estimator of

a label class is now given by a two-layer neural network b̂ = sign(W>
2 σ(W>

1 a)), where W1

in Rp×d represents the weights of a hidden layer with d neurons, W2 in Rd carries the weight

of the network’s second layer, and σ(u) = log(1 + eu) is a non-linear function, applied

2available here http://spams-devel.gforge.inria.fr.

http://spams-devel.gforge.inria.fr.

111

0 10 20 30 40 50 60 70 80 90 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of iterations

F
u

n
c
ti

o
n

 v
a
lu

e

Matrix factorization, n=1000

nonconvex saga
convex saga
4wd−catalyst saga

0 10 20 30 40 50 60 70 80 90 100
0.48

0.5

0.52

0.54

0.56

0.58

0.6

Number of iterations

F
u

n
c
ti

o
n

 v
a
lu

e

Matrix factorization, n=10000

nonconvex saga
convex saga
4wd−catalyst saga

0 10 20 30 40 50 60 70 80 90 100
0.46

0.47

0.48

0.49

0.5

0.51

0.52

Number of iterations

F
u

n
c
ti

o
n

 v
a
lu

e

Matrix factorization, n=100000

nonconvex saga
convex saga
4wd−catalyst saga

0 10 20 30 40 50 60 70 80 90 100
−4

−3.5

−3

−2.5

−2

−1.5

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Matrix factorization, n=1000

nonconvex saga
convex saga
4wd−catalyst saga

0 10 20 30 40 50 60 70 80 90 100
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Matrix factorization, n=10000

nonconvex saga
convex saga
4wd−catalyst saga

0 10 20 30 40 50 60 70 80 90 100
−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Matrix factorization, n=100000

nonconvex saga
convex saga
4wd−catalyst saga

Figure 3.2: Dictionary learning experiments using SAGA. We plot the function value (top)

and the subgradient norm (bottom). From left to right, we vary the size of dataset from

n = 1 000 to n = 100 000.

pointwise to its arguments. We fix the number of hidden neurons to d = 100 and use the

logistic loss to fit the estimators to the true labels. Since the memory required by SAGA

becomes n times larger than SVRG for nonlinear models, which is problematic for large n,

we can only perform experiments with SVRG. The experimental results are reported on two

datasets alpha and covtype in Figures 3.3 and 3.4.

Initial estimates of L. The proposed algorithm 4WD-Catalyst-Automatic requires an

initial estimate of the Lipschitz constant L. In the problems we are considering, there is

no simple closed form formula available to compute an estimate of L. We use following

heuristics to estimate L:

1. For matrix factorization, it can be shown that the function fi defined in (3.22) is

differentiable according to Danskin’s theorem [see Bertsekas [5], Proposition B.25] and

its gradient is given by

∇Dfi(D) = −(xi −Dαi(D))αi(D)T where αi(D) ∈ argmin
α∈Rp

1

2
‖xi −Dα‖2 + ψ(α).

112

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of iterations

F
u

n
c

ti
o

n
 v

a
lu

e

Neural network, alpha, n=1000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 50 100 150 200 250
0.2

0.3

0.4

0.5

0.6

0.7

Number of iterations

F
u

n
c

ti
o

n
 v

a
lu

e

Neural network, alpha, n=10000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of iterations

F
u

n
c

ti
o

n
 v

a
lu

e

Neural network, alpha, n=100000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 50 100 150 200 250
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Neural network, alpha, n=1000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 50 100 150 200 250
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Neural network, alpha, n=10000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 50 100 150 200 250
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Neural network, alpha, n=100000

nonconvex svrg
convex svrg
4wd−catalyst svrg

Figure 3.3: Neural network experiments on subsets of dataset alpha. From left to right, we

vary the size of the dataset’s subset from n = 1 000 to n = 100 000.

0 50 100 150 200 250
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Number of iterations

F
u

n
c

ti
o

n
 v

a
lu

e

Neural network, covtype, n=1000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 50 100 150 200 250
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of iterations

F
u

n
c

ti
o

n
 v

a
lu

e

Neural network, covtype, n=10000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 50 100 150 200 250

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of iterations

F
u

n
c

ti
o

n
 v

a
lu

e

Neural network, covtype, n=100000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 50 100 150 200 250
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Neural network, covtype, n=1000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 50 100 150 200 250
−6

−5

−4

−3

−2

−1

0

1

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Neural network, covtype, n=10000

nonconvex svrg
convex svrg
4wd−catalyst svrg

0 50 100 150 200 250
−6

−5

−4

−3

−2

−1

0

1

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Neural network, covtype, n=100000

nonconvex svrg
convex svrg
4wd−catalyst svrg

Figure 3.4: Neural network experiments on subsets of datasets alpha (top) and covtype

(bottom).

If the coefficients αi were fixed, the gradient would be linear in D and thus admit ‖αi‖2

as Lipschitz constant. Therefore, when initializing our algorithm at D0, we find αi(D0)

for any i ∈ [1, n] and use maxi∈[1,n] ‖αi(D0)‖2 as an estimate of L.

2. For neural networks, the formulation we are considering is actually differentiable. We

113

randomly generates two pairs of weight vectors (W1,W2) and (W ′
1,W

′
2) and use the

quantity

max
i∈[1,n]

{
‖∇fi(W1,W2)−∇fi(W ′

1,W2)‖
‖W1 −W ′

1‖
,
‖∇fi(W1,W2)−∇fi(W1,W

′
2)‖

‖W2 −W ′
2‖

}
as an estimate of the Lipschitz constant, where fi denotes the loss function respect to

i-th training sample (ai, bi). We separate weights in each layer to estimate the Lipschitz

constant per layer. Indeed the scales of the weights can be quite different across layers.

Computational cost. For the Convex-SVRG and Nonconvex-SVRG, one iteration cor-

responds to one pass over the data in the plots. On the one hand, since 4WD-Catalyst-

Automatic-SVRG solves two sub-problems per iteration, the cost per iteration is twice that

of the Convex-SVRG and Nonconvex-SVRG. On the other hand, in the experiments, we

observe that, every time acceleration occurs, then x̃k is almost always preferred to x̄k in step

4 of 4WD-Catalyst-Automatic, hence half of the computations are in fact not performed

when running 4WD-Catalyst-Automatic-SVRG.

We report in Figure 3.5 an experimental study where we vary S on the neural network

example. In terms of number of iterations, of course, the larger Sk the better the performance.

This is not surprising as we solve each subproblem more accurately. Nevertheless, in terms

of number of gradient evaluations, the relative performance is reversed. There is clearly no

benefit to take larger Sk. This justifies in hindsight our choice of setting S = 1.

Experimental conclusions. In matrix factorization experiments, we observe that 4WD-

Catalyst-Automatic-SVRG always outperforms the competing algorithms. Nonconvex-SVRG

has slower convergence in objective values and Convex-SVRG is not always converging; see in

particular right panel in Fig. 3.1. Therefore 4WD-Catalyst-Automatic-SVRG offers a more

stable option than Convex-SVRG for minimizing nonconvex objectives. Furthermore, in

these experiments 4WD-Catalyst-Automatic-SVRG enjoys a faster convergence in objective

values. This confirms the remarkable ability of 4WD-Catalyst-Automatic-SVRG to adapt

114

0 20 40 60 80 100 120 140 160 180 200
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

Number of gradient evaluation

F
u

n
c

ti
o

n
 v

a
lu

e

Neural network, covtype, n=1000

4wd−catalyst svrg S
k
=1

4wd−catalyst svrg S
k
=logk/2

4wd−catalyst svrg S
k
=logk

4wd−catalyst svrg S
k
=2logk

4wd−catalyst svrg S
k
=3logk

0 5 10 15 20 25 30 35 40 45 50
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Number of iterations

L
o

g
 o

f
S

u
b

g
ra

d
ie

n
t

N
o

rm

Neural network, covtype, n=1000

4wd−catalyst svrg S
k
=1

4wd−catalyst svrg S
k
=logk/2

4wd−catalyst svrg S
k
=logk

4wd−catalyst svrg S
k
=2logk

4wd−catalyst svrg S
k
=3logk

Figure 3.5: We ran 50 iterations of 4WD-Catalyst-Automatic SVRG with different choices

of S on a two-layer neural network. The data is a subset of dataset covtype. The x-axis is

the number of gradient evaluations on the left, which is T + Sk per iteration with T = 1;

and the number of iterations on the right.

to nonconvex terrains. Similar conclusions hold when applying 4WD-Catalyst-Automatic to

SAGA, which demonstrates how general 4WD-Catalyst-Automatic is.

In neural network experiments, we observe that 4WD-Catalyst-Automatic-SVRG con-

verges much faster in terms of objective values than the competing algorithms. Nonconvex-

SVRG with the theoretically recommended sequence of step-sizes [94] compares unfavorably

here, which implies that the recommended step-sizes are too pessimistic hence too small. We

also observe an interesting phenomenon: the subgradient norm may increase at some point

then decrease, while the function value keeps decreasing, as the algorithm proceeds. This

suggests that the extrapolation step, or the Auto-adapt procedure, is helpful to escape bad

stationary points, e.g., saddle-points. A more systematic study is required to confirm such

observation, we leave it as a potential direction of future work.

115

Chapter 4

VARIATIONAL ANALYSIS OF SPECTRAL FUNCTIONS
SIMPLIFIED

Joint work with D. Drusvyatskiy [40]

Abstract. Spectral functions of symmetric matrices – those depending on matrices only

through their eigenvalues – appear often in optimization. A cornerstone variational analytic

tool for studying such functions is a formula relating their subdifferentials to the subdifferen-

tials of their diagonal restrictions. This paper presents a new, short, and revealing derivation

of this result. We then round off the paper with an illuminating derivation of the second

derivative of C2-smooth spectral functions, highlighting the underlying geometry. All of

our arguments have direct analogues for spectral functions of Hermitian matrices, and for

singular value functions of rectangular matrices.

4.1 Introduction

This work revolves around spectral functions. These are functions on the space of n × n

symmetric matrices Sn that depend on matrices only through their eigenvalues, that is,

functions that are invariant under the action of the orthogonal group by conjugation. Spectral

functions can always be written in a composite form f ◦λ, where f is a permutation-invariant

function on Rn and λ is a mapping assigning to each matrix X the vector of eigenvalues

(λ1(X), . . . , λn(X)) in nonincreasing order.

A pervasive theme in the study of such functions is that various variational properties of

the permutation-invariant function f are inherited by the induced spectral function f ◦ λ;

see e.g. [28, 29, 31, 32, 37, 102, 106, 107]. Take convexity for example. Supposing that f is

closed and convex, the main result of [59] shows that the Fenchel conjugate of f ◦ λ admits

116

the elegant representation

(f ◦ λ)? = f ? ◦ λ. (4.1)

An immediate conclusion is that f ◦ λ agrees with its double conjugate and is therefore

convex, that is, convexity of f is inherited by the spectral function f ◦ λ. A convenient

characterization of the subdifferential ∂(f ◦λ)(X) in terms of ∂f(λ(X)) then readily follows

[59, Theorem 3.1] — an important result for optimization specialists.

In a follow up paper [61], Lewis showed that even for nonconvex functions f , the following

exact relationship holds:

∂(f ◦ λ)(X) = {U(Diag v)UT : v ∈ ∂f(λ(X)), U ∈ OnX}, (4.2)

where

OnX := {U ∈ On : X = U(Diagλ(X))UT}.

Here, the symbol On denotes the group of orthogonal matrices and the symbols ∂(f ◦λ) and

∂f may refer to the Fréchet, limiting, or Clarke subdifferentials; see e.g. [98] for the relevant

definitions. Thus calculating the subdifferential of the spectral function f ◦ λ on Sn reduces

to computing the subdifferential of the usually much simpler function f on Rn. For instance,

subdifferential computation of the k’th largest eigenvalue function X 7→ λk(X) amounts

to analyzing a piecewise polyhedral function, the k’th order statistic on Rn [61, Section 9].

Moreover, the subdifferential formula allows one to gauge the underlying geometry of spectral

functions, through their “active manifolds” [28], for example.

In striking contrast to the convex case [59], the proof of the general subdifferential formula

(4.2) requires much finer tools, and is less immediate to internalize. This paper presents a

short, elementary, and revealing derivation of equation (4.2) that is no more involved than

its convex counterpart. Here’s the basic idea. Consider the Moreau envelope

fα(x) := inf
y

{
f(y) +

1

2α
|x− y|2

}
.

Similar notation will be used for the envelope of f ◦ λ. In direct analogy to equation (4.1),

117

we will observe that the Moreau envelope satisfies the equation

(f ◦ λ)α = fα ◦ λ,

and derive a convenient formula for the corresponding proximal mapping. The case when f is

an indicator function was treated in [29], and the argument presented here is a straightforward

adaptation, depending solely on the Theobald–von Neumann inequality [108, 111]. The

key observation now is independent of the eigenvalue setting: membership of a vector v in

the proximal or in the Fréchet subdifferential of any function g at a point x is completely

determined by the local behavior of the univariate function α 7→ gα(x+ αv) near the origin.

The proof of the subdifferential formula (4.2) quickly flows from there. It is interesting to note

that the argument uses very little information about the properties of the eigenvalue map,

with the exception of the Theobald–von Neumann inequality. Consequently, it applies equally

well in a more general algebraic setting of certain isometric group actions, encompassing also

an analogous subdifferential formula for functions of singular values derived in [64, 65, 101];

a discussion can be found in the appendix of the arXiv version of the paper. A different Lie

theoretic approach in the convex case appears in [62].

We complete the paper by reconsidering the second-order theory of spectral functions.

In [63, 102, 106], the authors derived a formula for the second derivative of a C2-smooth

spectral function. In its simplest form it reads

∇2F (Diag a)[B] = Diag
(
∇2f(a)diag(B)

)
+A ◦B,

where A ◦B is the Hadamard product and

Aij =

∇f(a)i−∇f(a)j

ai−aj if ai 6= aj

∇2f(a)ii −∇2f(a)ij if ai = aj

.

This identity is quite mysterious, and its derivation is largely opaque geometrically. In the

current work, we provide a transparent derivation, making clear the role of the invariance

properties of the gradient graph. To this end, we borrow some ideas from [106], while giving

them a geometric interpretation.

118

The outline of the manuscript is as follows. Section 4.2 records some basic notation and

an important preliminary result about the Moreau envelope (Lemma 4.2.1). Section 4.3

contains background material on orthogonally invariant functions. Section 4.4 describes the

derivation of the subdifferential formula and Section 4.5 focuses on the second-order theory

– the main results of the paper.

4.2 Notation

This section briefly records some basic notation, following closely the monograph [98]. The

symbol E will always denote an Euclidean space (finite-dimensional real inner product space)

with inner product 〈·, ·〉 and induced norm | · |. A closed ball of radius ε > 0 around a point

x will be denoted by Bε(x). The closure and the convex hull of a set Q in E will be denoted

by clQ and convQ, respectively.

Throughout, we will consider functions f on E taking values in the extended real line

R := R ∪ {±∞}. For such a function f and a point x̄, with f(x̄) finite, the proximal

subdifferential ∂pf(x̄) consists of all vectors v ∈ E such that there exists constants r > 0 and

ε > 0 satisfying

f(x) ≥ f(x̄) + 〈v, x− x̄〉 − r

2
|x− x̄|2 for all x ∈ Bε(x̄).

Whenever f is C2-smooth near x̄, the proximal subdifferential ∂pf(x̄) consists only of the

gradient ∇f(x̄). A function f is said to be prox-bounded if it majorizes some quadratic

function. In particular, all lower-bounded functions are prox-bounded. For prox-bounded

functions, the inequality in the definition of the proximal subdifferential can be taken to hold

globally at the cost of increasing r [98, Proposition 8.46]. The Fréchet subdifferential of f at

x̄, denoted ∂̂f(x̄), consists of all vectors v ∈ E satisfying

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(|x− x̄|).

Here, as usual, o(|x− x̄|) denotes any term satisfying o(|x−x̄|)
|x−x̄| → 0. Whenever f is C1-smooth

near x̄, the set ∂̂f(x̄) consists only of the gradient ∇f(x̄). The subdifferentials ∂pf(x̄) and

119

∂̂f(x̄) are always convex, while ∂̂f(x̄) is also closed. The limiting subdifferential of f at x̄,

denoted ∂f(x̄), consists of all vectors v ∈ E so that there exist sequences xi and vi ∈ ∂̂f(xi)

with (xi, f(xi), vi) → (x̄, f(x̄), v). The same object arises if the vectors vi are restricted

instead to lie in ∂pf(xi) for each index i; see for example [98, Corollary 8.47]. The horizon

subdifferential, denoted ∂∞f(x̄), consists of all limits of λivi for some sequences vi ∈ ∂f(xi)

and λi ≥ 0 satisfying xi → x̄ and λi ↘ 0. This object records horizontal “normals” to the

epigraph of the function. For example, f is locally Lipschitz continuous around x̄ if and only

if the set ∂∞f(x̄) contains only the zero vector.

The two key constructions at the heart of the paper are defined as follows. Given a

function f : E → R and a parameter α > 0, the Moreau envelope fα and the proximal

mapping Pαf are defined by

fα(x) := inf
y∈E

{
f(y) +

1

2α
|y − x|2

}
,

Pαf(x) := argmin
y∈E

{
f(y) +

1

2α
|y − x|2

}
.

Extending the definition slightly, we will set f0(x) := f(x). It is easy to see that f is prox-

bounded if and only if there exists some point x ∈ E and a real α > 0 satisfying fα(x) > −∞.

The proximal and Fréchet subdifferentials are conveniently characterized by a differential

property of the function α 7→ fα(x + αv). This observation is recorded below. To this end,

for any function ϕ : [0,∞)→ R, the one-sided derivative will be denoted by

ϕ′+(0) := lim
α↘0

ϕ(α)− ϕ(0)

α
.

Lemma 4.2.1 (Subdifferential and the Moreau envelope).

Consider an lsc, prox-bounded function f : E → R, and a point x with f(x) finite. Fix a

vector v ∈ E and define the function ϕ : [0,∞) → R by setting ϕ(α) := fα(x + αv). Then

the following are true.

(i) The vector v lies in ∂̂f(x) if and only if

ϕ′+(0) =
|v|2

2
. (4.3)

120

(ii) The vector v lies in ∂pf(x) if and only if there exists α > 0 satisfying x ∈ Pαf(x+αv),

or equivalently

ϕ(α) = f(x) +
|v|2

2
α.

In this case, the equation above continues to hold for all α̃ ∈ [0, α].

Proof. Claim (ii) is immediate from definitions; see for example [98, Proposition 8.46]. Hence

we focus on claim (i). To this end, note first that the inequality

fα(x+ αv)− f(x)

α
≤ |v|

2

2
holds for any v ∈ E. (4.4)

Consider now a vector v ∈ ∂̂f(x) and any sequences αi ↘ 0 and xi ∈ Pαi(x+ αiv). We may

assume xi 6= x since otherwise there’s nothing to prove. Clearly xi tend to x and hence

fαi(x+ αiv)− f(x) = f(xi)− f(x) +
1

2αi
|(xi − x)− αiv|2

≥ o(|xi − x|) +
1

2αi
|xi − x|2 +

αi
2
|v|2.

Consequently, we obtain the inequality

fαi(x+ αiv)− f(x)

αi
≥ |xi − x|

αi
· o(|xi − x|)
|xi − x|

+
1

2

∣∣∣xi − x
αi

∣∣∣2 +
|v|2

2
.

Taking into account (4.4) yields the inequality

0 ≥ |xi − x|
αi

·
(
o(|xi − x|)
|xi − x|

+
1

2

∣∣∣xi − x
αi

∣∣∣) .
In particular, we deduce xi−x

αi
→ 0, and the equation (4.3) follows.

Conversely suppose that equation (4.3) holds, and for the sake of contradiction that v

does not lie in ∂̂f(x). Then there exists κ > 0 and a sequence yi → x satisfying

f(yi)− f(x)− 〈v, yi − x〉 ≤ −κ|yi − x|.

Then for any α > 0, observe

fα(x+ αv)− f(x)

α
≤ 1

α

(
f(yi)− f(x) +

1

2α
|(yi − x)− αv|2

)
≤ −κ |yi − x|

α
+

1

2

∣∣∣yi − x
α

∣∣∣2 +
|v|2

2
.

Setting αi := |yi−x|
κ

and letting i tend to ∞ yields a contradiction.

121

4.3 Symmetry and orthogonal invariance

Next we recall a basic correspondence between symmetric functions and spectral functions

of symmetric matrices. The discussion follows that of [61]. Henceforth Rn will denote an

n-dimensional real Euclidean space with a specified basis. Hence one can associate Rn with

a collection of n-tuples (x1, . . . , xn), in which case the inner product 〈·, ·〉 is the usual dot

product. The finite group of coordinate permutations of Rn will be denoted by Πn. A

function f : Rn → R is symmetric whenever it is Πn-invariant, meaning

f(πx) = f(x) for all x ∈ Rn and π ∈ Πn.

It is immediate to verify that if f is symmetric, then so is the Moreau envelope fα for any

α ≥ 0. This elementary observation will be important later.

The vector space of real n × n symmetric matrices will be denoted by Sn and will be

endowed with the trace inner product 〈X, Y 〉 = trXY , and the induced Frobenius norm

|X| =
√

trX2. For any x ∈ Rn, the symbol Diagx will denote the n × n matrix with x on

its diagonal and with zeros off the diagonal, while for a matrix X ∈ Sn, the symbol diagX

will denote the n-vector of its diagonal entries.

The group of real n×n orthogonal matrices will be written asOn. The eigenvalue mapping

λ : Sn → Rn assigns to each matrix X in Sn the vector of its eigenvalues (λ1(X), . . . , λn(X))

in a nonincreasing order. A function F : Sn → R is spectral if it is On-invariant under the

conjugation action, meaning

F (UXUT) = F (X) for all X ∈ Sn and U ∈ On.

In other words, spectral functions are those that depend on matrices only through their

eigenvalues. A basic fact is that any spectral function F on Sn can be written as a composition

of F = f ◦λ for some symmetric function f on Rn. Indeed, f can be realized as the restriction

of F to diagonal matrices f(x) = F (Diagx).

Two matrices X and Y in Sn are said to admit a simultaneous spectral decomposition if

there exists an orthogonal matrix U ∈ On such that UXUT and UY UT are both diagonal

122

matrices. It is well-known that this condition holds if and only if X and Y commute. The

matrices X and Y are said to admit a simultaneous ordered spectral decomposition if there

exists an orthogonal matrix U ∈ On satisfying UXUT = Diagλ(X) and UY UT = Diagλ(Y).

The following result characterizing this property, essentially due to Theobald [108] and von

Neumann [111], plays a central role in spectral variation analysis.

Theorem 4.3.1 (Von Neumann-Theobald). Any two matrices X and Y in Sn satisfy the

inequality

|λ(X)− λ(Y)| ≤ |X − Y |.

Equality holds if and only if X and Y admit a simultaneous ordered spectral decomposition.

This result is often called a trace inequality, since the eigenvalue mapping being 1-

Lipschitz (as in the statement above) is equivalent to the inequality

〈λ(X), λ(Y)〉 ≥ 〈X, Y 〉 for all X, Y ∈ Sn.

4.4 Derivation of the subdifferential formula

In this section, we derive the subdifferential formula for spectral functions. In what follows,

for any matrix X ∈ Sn define the diagonalizing matrix set

OX := {U ∈ On : U(Diagλ(X))UT = X}.

The spectral subdifferential formula readily follows from Lemma 4.2.1 and the following

intuitive proposition, a proof of which can essentially be seen in [29, Proposition 8].

Theorem 4.4.1 (Proximal analysis of spectral functions).

Consider a symmetric function f : Rn → R. Then the equation

(f ◦ λ)α = fα ◦ λ holds. (4.5)

In addition, the proximal mapping admits the representation:

Pα(f ◦ λ)(X) =
{
U
(
Diag y

)
UT : y ∈ Pαf(λ(X)), U ∈ OX

}
. (4.6)

123

Moreover, for any Y ∈ Pα(f ◦ λ)(X) the matrices X and Y admit a simultaneous ordered

spectral decomposition.

Proof. For any X and Y , applying the trace inequality (Theorem 4.3.1), we deduce

f(λ(Y)) +
1

2α
|Y −X|2 ≥ f(λ(Y)) +

1

2α
|λ(Y)− λ(X)|2 ≥ fα(λ(X)). (4.7)

Taking the infimum over Y , we deduce (f ◦λ)α(X) ≥ fα(λ(X)). On the other hand, for any

U ∈ OX , the inequalities hold:

(f ◦ λ)α(X) = inf
Y

{
f(λ(Y)) +

1

2α
|Y −X|2

}
= inf

Y

{
f(λ(Y)) +

1

2α
|UTY U −Diagλ(X)|2

}
≤ fα(λ(X)).

This establishes (4.5).

To establish equation (4.6), consider first a matrix U ∈ OX and a vector y ∈ Pαf(λ(X)),

and define Y := U(Diag y)UT . Then we have

(f ◦ λ)(Y)+
1

2α
|Y −X|2 = f(y) +

1

2α
|y − λ(X)|2 = fα(λ(X)) = (f ◦ λ)α(X).

Hence the inclusion Y ∈ Pα(f ◦ λ)(X) is valid, as claimed. Conversely, fix any matrix

Y ∈ Pα(f ◦ λ)(X). Then plugging in Y into (4.7), the left-hand-side equals (f ◦ λ)α(X) and

hence the two inequalities in (4.7) hold as equalities. The second equality immediately yields

the inclusion λ(Y) ∈ Pαf(λ(X)), while the first along with Theorem 4.3.1 implies that X

and Y admit a simultaneous ordered spectral decomposition, as claimed.

Combining Lemma 4.2.1 and Theorem 4.4.1, the main result of the paper readily follows.

Theorem 4.4.2 (Subdifferentials of spectral functions). Consider an lsc symmetric function

f : Rn → R. Then the following equation holds:

∂(f ◦ λ)(X) =
{
U
(
Diag v

)
UT : v ∈ ∂f(λ(X)), U ∈ OX

}
. (4.8)

Analogous formulas hold for the proximal, Fréchet, and horizon subdifferentials.

124

Proof. Fix a matrix X in the domain of f ◦ λ and define x := λ(X). Without loss of

generality, suppose that f is lower-bounded. Indeed if this were not the case, then since f

is lsc there exists ε > 0 so that f is lower-bounded on the ball Bε(x). Consequently adding

to f the indicator function of the symmetric set ∪π∈ΠBε(πx) assures that the function is

lower-bounded.

We first dispense with the easy inclusion ⊆ for all the subdifferentials. To this end,

recall that if V is a proximal subgradient of f ◦ λ at X, then there exists α > 0 satisfying

X ∈ Pα(f ◦λ)(X+αV). Theorem 4.4.1 then implies that X and V commute. Taking limits,

we deduce that all Fréchet, limiting, and horizon subgradients of f ◦ λ at X also commute

with X. Recalling that commuting matrices admit simultaneous spectral decomposition,

basic definitions immediately yield the inclusion ⊆ in equation (4.8) for the proximal and

for the Fréchet subdifferentials. Taking limits, we deduce the inclusion ⊆ in (4.8) for the

limiting and for the horizon subdifferentials, as well.

Next, we argue the reverse inclusion. To this end, define V := U(Diag v)UT for an

arbitrary matrix U ∈ OX and any vector v ∈ Rn. Then Theorem 4.4.1, along with the

symmetry of the envelope fα, yields the equation

(f ◦ λ)α(X + αV)− f(λ(X))

α
=
fα(x+ αv)− f(x)

α
.

Consequently if v lies in ∂pf(x), then Lemma 4.2.1 shows that for some α > 0 the right-hand-

side equals |v|
2

2
, or equivalently |V |

2

2
. Lemma 4.2.1 then yields the inclusion V ∈ ∂p(f ◦λ)(X).

Similarly if v lies in ∂̂f(x), then the same argument but with α tending to 0 shows that V

lies in ∂̂(f ◦ λ)(X). Thus the inclusion ⊇ in equation (4.8) holds for the proximal and for

the Fréchet subdifferentials. Taking limits, the same inclusion holds for the limiting and for

the horizon subdifferentials. This completes the proof.

Remark 8. It easily follows from Theorem 4.4.2 that the inclusion ⊇ holds for the Clarke

subdifferential. The reverse inclusion, however, requires a separate argument given in [61,

Sections 7-8].

125

In conclusion, we should mention that all the arguments in the section apply equally well

for Hermitian matrices (with the standard Hermitian trace product), with the orthogonal

matrices replaced by unitary matrices. Entirely analogous arguments also apply for func-

tions of singular values of rectangular matrices (real or complex). For more details, see the

appendix in the arXiv version of the paper.

4.5 Hessians of C2-smooth spectral functions

In this section, we revisit the second-order theory of spectral functions. To this end, fix for

the entire section an lsc symmetric function f : Rn → R and define the spectral function

F := f ◦ λ on Sn. It is well known that f is C2-smooth around a matrix X if and only if F

is C2-smooth around λ(X); see [63, 102, 106, 107]. Moreover, a formula for the Hessian of

F is available: for matrices A = Diag(a) and B ∈ Sn we have

∇2F (A)[B] = Diag
(
∇2f(a)diag(B)

)
+A ◦B,

where A ◦B is the Hadamard product and

Aij =

∇f(a)i−∇f(a)j

ai−aj if ai 6= aj

∇2f(a)ii −∇2f(a)ij if ai = aj

.

The assumption that A is a diagonal matrix is made without loss of generality, as will

be apparent shortly. In this section, we provide a transparent geometric derivation of the

Hessian formula by considering invariance properties of gph∇F . Some of our arguments

give a geometric interpretation of the techniques in [106].

Remark 9 (Hessian and the gradient graph). Throughout the section we will appeal to

the following basic property of the Hessian. For any C2-smooth function g on an Euclidean

space, the vector z := ∇2g(a)[b] is the unique vector satisfying (z,−b) ∈ Ngph∇g(a,∇g(a)).

Consider now the action of the orthogonal group On on Sn by conjugation namely U.X =

UXUT . Recall that F is invariant under this action, meaning F (U.X) = F (X) for all

126

orthogonal matrices U . This action naturally extends to the product space Sn × Sn by

setting U.(X, Y) = (U.X,U.Y). As we have seen, the graph gph∇F is then invariant with

respect to this action:

U.gph∇F = gph∇F for all U ∈ On.

One immediate observation is that Ngph∇F (U.X,U.Y) = U.Ngph∇F (X, Y). Consequently we

deduce

(Z,−B) ∈ Ngph∇F (X, Y) ⇐⇒ (U.Z,−U.B) ∈ Ngph∇F (U.X,U.Y)

The formula

∇2F (X)[B] = UT .∇2F (U.X)[U.B] (4.9)

now follows directly from Remark 9, whenever F is C2-smooth around X. As a result, when

speaking about the operator ∇2F (X), we may assume without loss of generality that X and

∇F (X) are both diagonal matrices.

Next we briefly recall a few rudimentary properties of the conjugation action; see for

example [57, Sections 4, 8, 9]. We say that a n×n matrix W is skew-symmetric if W T = −W .

Then it is well-known that On is a smooth manifold and the tangent space to On at the

identity matrix consists of skew-symmetric matrices:

TOn(I) = {W ∈ Rn×n : W is skew-symmetric}.

The commutator of two matrices A,B ∈ Rn×n, denoted by [A,B] is the matrix [A,B] :=

AB − BA. An easy computation shows that the commutator of a skew-symmetric matrix

with a symmetric matrix is itself symmetric. Moreover, the identity

〈X, [W,Z]〉 = 〈[X,W], Z〉

holds for any matrices X,Z ∈ Sn and skew-symmetric W . For any matrix A ∈ Sn, the orbit

of A, denoted by On.A is the set

On.A = {U.A : U ∈ On}.

127

Similarly, the orbit of a pair (A,B) ∈ Sn × Sn is the set

On.(A,B) = {(U.A, U.B) : U ∈ On}.

An standard computation1 now shows that orbits are smooth manifolds with tangent spaces

TOn.A(A) = {[W,A] : W is skew-symmetric},

TOn.(A,B)(A,B) = {([W,A], [W,B]) : W is skew-symmetric}.

Now supposing that F is twice differentiable at a matrix A ∈ Sn×n, the graph gph∇F

certainly contains the orbit On.(A,∇F (A)). In particular, this implies that the tangent

space to gph∇F at (A,∇F (A)) contains the tangent space to the orbit:

{([W,A], [W,∇F (A)]) : W skew-symmetric}.

Consequently, for any B ∈ Sn, the tuple (∇2F (A)[B],−B) is orthogonal to the tuple

([W,A], [W,∇F (A)]) for any skew-symmetric matrix W . We record this elementary ob-

servation in the following lemma. This also appears as [106, Lemma 3.2].

Lemma 4.5.1 (Orthogonality to orbits). Suppose F is C2-smooth around A ∈ Sn. Then

for any skew-symmetric matrix W and any B ∈ Sn, we have

〈∇2F (A)[B], [W,A]〉 = 〈B, [W,∇F (A)]〉.

Proof. This is immediate from the preceding discussion.

Next recall that the stabilizer of a matrix A ∈ Sn is the set:

Stab(A) = {U ∈ On : U.A = A}.

Similarly we may define the set Stab(A,B).

1Compute the differential of the mapping On 3 U 7→ U.A

128

Lemma 4.5.2 (Tangent space to the stabilizer). For any matrices A,B ∈ Sn, the tangent

spaces to Stab(A) and to Stab(A,B) at the identity matrix are the sets

{W ∈ Rn×n : W skew-symmetric, [W,A] = 0},

{
W ∈ Rn×n : W skew-symmetric, [W,A] = [W,B] = 0

}
,

respectively.

(Proof sketch). Define the orbit map θ(A) : On → On.A by setting θ(A)(U) := U.A. A quick

computation shows that θ(A) is equivariant with respect to left-multiplication action of On

on itself and the conjugation action of On on On.A. Hence the equivariant rank theorem

([57, Theorem 7.25]) implies that θ(A) has constant rank. In fact, since θ(A) is surjective, it

is a submersion. It follows that the stabilizer

Stab(A) = (θ(A))−1(A)

is a smooth manifold with tangent space at the identity equal to the kernel of the differential

d θ(A)
∣∣
U=I

(W) = [W,A]. The expression for the tangent space to Stab(A) immediately

follows. The analogous expression for Stab(A,B) follows along similar lines.

With this, we are able to state and prove the main theorem.

Theorem 4.5.3 (Hessian of C2-smooth spectral functions). Consider a symmetric function

f : Rn → R and the spectral function F = f ◦ λ. Suppose that F is C2-smooth around a

matrix A := Diag(a) and for any matrix matrix B ∈ Sn define Z := ∇2F (A)[B]. Then

equality

diag(Z) = ∇2f(a)[diag(B)],

holds, while for indices i 6= j, we have

Zij =

Bij

(
∇f(a)i−∇f(a)j

ai−aj

)
if ai 6= aj

Bij

(
∇2f(a)ii −∇2f(a)ij

)
if ai = aj.

129

Proof. First observe that clearly f must be C2 smooth at a. Now, since A is diagonal, so is

the gradient ∇F (A). So without loss of generality, we can assume ∇F (A) = Diag(∇f(a)).

Observe now that (Z,−B) is orthogonal to the tangent space of gph∇F at (A,∇F (A)).

On the other hand, for any vector a′ ∈ Rn, we have equality

〈

 Z

−B

 ,

 Diag(a′)−Diag(a)

Diag(∇f(a′))−Diag(∇f(a))

〉 = 〈

 diag(Z)

−diag(B)

 ,

 a′ − a

∇f(a′)−∇f(a)

〉.
It follows immediately that the tuple (diag(Z),−diag(B)) is orthogonal to the tangent space

of gph∇f at (a,∇f(a)). Hence we deduce the equality diag(Z) = ∇2f(a)[diag(B)] as

claimed.

Next fix indices i and j with ai 6= aj, and define the skew-symmetric matrix W (i,j) :=

eie
T
j − ejeTi , where ek denotes the k’th standard basis vector. Applying Lemma 4.5.1 with

the skew-symmetric matrix W = 1
ai−ajW

(i,j), we obtain

−2Zij = 〈Z,
[

1
ai−ajW

(i,j), A
]
〉 = −〈[1

ai−ajW
i,j, B

]
,∇F (A)〉

= −〈diag[1
ai−ajW

i,j, B
]
,∇f(a)〉 = −2Bij

(
∇f(a)i −∇f(a)j

ai − aj

)
.

The claimed formula Zij = Bij

(
∇f(a)i−∇f(a)j

ai−aj

)
follows.

Finally, fix indices i and j, with ai = aj. Observe now the inclusion

Stab(A) ⊂ Stab(∇F (A)).

Indeed for any matrix U ∈ Stab(A), we have

∇F (A) = ∇F (UAUT) = U∇F (A)UT .

This in particular immediately implies that the tangent space Tgph∇F (A,∇F (A)) is invariant

under the action of Stab(A), that is

U.Tgph∇F (A,∇F (A)) = Tgph∇F (A,∇F (A))

130

for any U ∈ Stab(A). Hence their entire orbit Stab(A).(X, Y) of any tangent vector

(X, Y) ∈ Tgph∇F (A,∇F (A)) is contained in the tangent space Tgph∇F (A,∇F (A)). We

conclude that the tangent space to such an orbit Stab(A).(X, Y) at (X, Y) is contained

in Tgph∇F (A,∇F (A)) as well.

Define now the matrices Ei := Diag(ei) and Ẑ := Diag(∇2f(a)[ei]). Because F is C2-

smooth, clearly the inclusion (Ei, Ẑ) ∈ Tgph∇F (A,∇F (A) holds. The above argument, along

with Lemma 4.5.2, immediately implies the inclusion

{([W,Ei], [W, Ẑ]) : W skew-symmetric, [W,A] = 0} ⊆ Tgph∇F (A,∇F (A))

and in particular, ([W,Ei], [W, Ẑ]) is orthogonal to (Z,−B) for any skew-symmetric W sat-

isfying [W,A] = 0. To finish the proof, simply set W = W (i,j). Then since ai = aj, we have

[W,A] = 0 and therefore

−2Zij = 〈Z, [W (i,j), Ei]〉 = 〈B, [W (i,j), Ẑ]〉 = −〈[W (i,j), B], Ẑ〉

= −2Bij

(
∇2f(a)ii −∇2f(a)ij

)
,

as claimed. This completes the proof.

Remark 10. The appealing geometric techniques presented in this section seem promising

for obtaining at least necessary conditions for the generalized Hessian, in the sense of [75], of

spectral functions that are not necessarily C2-smooth. Indeed the arguments presented deal

entirely with the graph gph∇f , a setting perfectly adapted to generalized Hessian computa-

tions. There are difficulties, however. To illustrate, consider a matrix Z ∈ ∂2F (A|V). Then

one can easily establish properties of DiagZ analogous to those presented in Theorem 4.5.3,

as well as properties of Zij for indices i and j satisfying ai 6= aj. The difficulty occurs for

indices i and j with ai = aj. In this case, our argument used explicitly the fact that tangent

cones to gph ∂f are linear subspaces, a property that is decisively false in the general setting.

131

Appendix A

APPENDIX FOR CHAPTER 2

A.1 Proofs of Lemmas 2.5.3, 2.7.1 and Theorems 2.8.6, 2.8.7

In this section, we prove Lemmas 2.5.3, 2.7.1 and Theorems 2.8.6, 2.8.7 in order.

Proof of Lemma 2.5.3. Observe for any t > 0 and any proper, closed, convex function f , we

have

prox(tf)?(w) = argmin
z

{tf ?(z/t) + 1
2
‖z − w‖2} = t · proxf?/t(w/t), (A.1)

where the first equation follows from the definition of the proximal map and from [95, The-

orem 16.1]. From [95, Theorem 31.5], we obtain proxth?(w) = w − prox(th?)?(w), while an

application of (A.1) with f = h? then directly implies (2.29).

The fact that the gradient map ∇
(
G? ◦A∗−〈b, ·〉

)
is Lipschitz with constant t‖∇c(x)‖2

op

follows directly from ∇G? being t-Lipschitz continuous. The chain rule, in turn, yields

∇
(
G? ◦ A∗ − 〈b, ·〉

)
(w) = A∇G?(A∗w)− b.

Thus we must analyze the expression ∇G?(z) = ∇(g + 1
2t
‖ · −x‖2)?(z). Notice that the

conjugate of 1
2t
‖ · −x‖2 is the function t

2
‖ · ‖2 + 〈·, x〉. Hence, using [95, Theorem 16.4] we

deduce

(g + 1
2t
‖ · −x‖2)?(z) = inf

y
{g?(y) + t

2
‖z − y‖2 + 〈z − y, x〉} = (g?)1/t(z + x/t)− 1

2t
‖x‖2,

where the last equation follows from completing the square. We thus conclude

∇G?(z) = ∇(g?)1/t(z + x/t) = t · prox(g?/t)?(z + x/t) = proxtg(x+ tz),

where the second equality follows from Lemma 2.2.1 and the third from (A.1). The expres-

sions (2.30) and (2.31) follow.

132

Proof of Lemma 2.7.1. Observe

‖h(y)− h(z)‖ ≤ 1

m

m∑
i=1

|hi(yi)− hi(zi)| ≤
L

m

m∑
i=1

‖y − z‖1 ≤
L√
m
‖y − z‖,

where the last equality follows from the lp-norm comparison ‖ · ‖1 ≤
√
m‖ · ‖2. This proves

lip (h) ≤ L/
√
m. Next for any point x observe

‖∇c(x)‖op = max
v:‖v‖=1

‖∇c(x)v‖ ≤

√√√√ m∑
i=1

‖∇ci(x)‖2 ≤
√
m max

i=1,...,m
‖∇ci(x)‖

By an analogous argument, we have

‖∇c(x)−∇c(z)‖op ≤

√√√√ m∑
i=1

‖∇ci(x)−∇ci(z)‖2 ≤ β
√
m‖x− z‖,

and hence lip (∇c) ≤ β
√
m. Finally, suppose that each hi is C1-smooth with Lh-Lipschitz

gradient ∇hi. Observe then

‖∇h(y)−∇h(z)‖ =
1

m

√√√√ m∑
i=1

|h′i(yi)− h′i(zi)|2 ≤
Lh
m
‖y − z‖2.

The result follows.

Proof of Theorem 2.8.6. The proof is a modification of the proof Theorem 2.8.3; as such, we

skip some details. For any point w, we successively deduce

F (xk) ≤ h
(
ζk + c(yk) +∇c(yk)(xk − yk)

)
+ g(xk) +

µ

2
‖xk − yk‖2 + Lεk

≤
(
h
(
ζk + c(yk) +∇c(yk)(xk − yk)

)
+ g(xk) +

µ̃

2
‖xk − yk‖2

)
− µ̃− µ

2
‖xk − yk‖2 + Lεk

≤ h
(
ζk + c(yk) +∇c(yk)(w − yk)

)
+ g(w)

+
µ̃

2

(
‖w − yk‖2 − ‖w − xk‖2)− µ̃− µ

2
‖xk − yk‖2 + Lεk

≤ h
(
c(yk) +∇c(yk)(w − yk)

)
+ g(w)

+
µ̃

2

(
‖w − yk‖2 − ‖w − xk‖2)− µ̃− µ

2
‖xk − yk‖2 + 2Lεk.

133

Setting w := akvk + (1− ak)xk−1 and noting the equality w− yk = ak(vk − vk−1) then yields

F (xk) ≤h(c(yk) + ak∇c(yk)(vk − vk−1)) + akg(vk) + (1− ak)g(xk−1)

+
µ̃

2

(
‖ak(vk − vk−1)‖2 − ‖w − xk‖2)− µ̃− µ

2
‖xk − yk‖2 + 2Lεk.

Upper bounding −‖w − xk‖2 by zero and using Lipschitz continuity of h we obtain for any

point x the inequalities

F (xk) ≤ ak

(1

ak
h(ξk + c(yk) + ak∇c(yk)(vk − vk−1)) + g(vk)

)
+ (1− ak)g(xk−1)

+
µ̃a2

k

2
‖vk − vk−1‖2 − µ̃− µ

2
‖xk − yk‖2 + Lδk + 2Lεk.

≤ ak

(1

ak
h(ξk + c(yk) + ak∇c(yk)(x− vk−1)) + g(x)

+
µ̃ak
2

(‖x− vk−1‖2 − ‖vk − vk−1‖2 − ‖vk − x‖2)
)

+ (1− ak)g(xk−1)

+
µ̃a2

k

2
‖vk − vk−1‖2 − µ̃− µ

2
‖xk − yk‖2 + Lδk + 2Lεk.

≤ h(c(yk) + ak∇c(yk)(x− vk−1)) + akg(x) +
µ̃a2

k

2
(‖x− vk−1‖2 − ‖vk − x‖2)

+ (1− ak)g(xk−1)− µ̃− µ
2
‖xk − yk‖2 + 2Lδk + 2Lεk.

Define x̂ := akx+ (1− ak)xk−1 and note ak(x− vk−1) = x̂− yk. The same argument as that

of (2.77) yields

h(c(yk) +∇c(yk)(x̂− yk)) ≤akh(c(x)) + (1− ak)h(c(xk−1))+

ρak(1− ak)‖x− xk−1‖2 +
ra2

k

2
‖x− vk−1‖2.

Hence upper bounding 1− ak ≤ 1 we deduce

F (xk) ≤akF (x) + (1− ak)F (xk−1) +
µ̃a2

k

2
(‖x− vk−1‖2 − ‖x− vk‖2)

− µ̃− µ
2
‖yk − xk‖2 + ρak‖x− xk−1‖2 +

ra2
k

2
‖x− vk−1‖2 + 2L(δk + εk).

This expression is identical to that of (2.73) except for the error term 2L(δk + εk). The same

134

argument as in the proof of Theorem 2.8.3 then shows

F (xN)− F (x∗)

a2
N

+
µ̃

2
‖x∗ − vN‖2 ≤ µ̃

2
‖x∗ − v0‖2 + ρM2

(
N∑
j=1

1

aj

)

+
NrM2

2
− µ̃− µ

2

N∑
j=1

‖xj − yj‖2

a2
j

+ 2L
N∑
j=1

εj + δj
a2
j

.

Hence appealing to Lemma 2.5.5, we deduce

N∑
j=1

‖G1/µ̃(yj)‖2

a2
j

≤ 8Lµ̃
N∑
j=1

εj
a2
j

+ 2
N∑
j=1

‖µ̃(xj − yj)‖2

a2
j

≤ 8Lµ̃
N∑
j=1

εj
a2
j

+
4µ̃2

µ̃− µ

(
µ̃

2
‖x∗ − v0‖2 +

NM2(r + ρ
2
(N + 3))

2
+ 2L

N∑
j=1

εj + δj
a2
j

)
.

Therefore

min
i=1,...,N

‖G1/µ̃(yj)‖2 ≤
8 · 24Lµ̃

∑N
j=1

εj
a2j

N(N + 1)(2N + 1)

+
48µ̃2

µ̃− µ

 ‖x∗ − v0‖2

N(N + 1)(2N + 1)
+
M2(r + ρ

2
(N + 3))

(N + 1)(2N + 1)
+

4L
∑N

j=1
εj+δj
a2j

N(N + 1)(2N + 1)

Combining the first and fourth terms and using the inequality µ̃ ≥ µ yields the claimed

efficiency estimate on ‖G1/µ̃(yj)‖2. Finally, the claimed efficiency estimate on the functional

error F (xN)−F ∗ in the setting r = 0 follows by the same reasoning as in Theorem 2.8.3.

We next prove Theorem 2.8.7. To this end, we will need the following lemma.

Lemma A.1.1 (Lemma 1 in [100]). Suppose the following recurrence relation is satisfied

d2
k ≤ d2

0 + ck +
k∑
i=1

βidi

for some sequences di, βi ≥ 0 and an increasing sequence ci ≥ 0. Then the inequality holds:

dk ≤ Ak :=
1

2

k∑
i=1

βi +

d2
0 + ck +

(
1

2

k∑
i=1

βi

)2
1/2

.

Moreover since the terms on the right-hand side increase in k, we also conclude for any

k ≤ N the inequality dk ≤ AN .

135

The ε-subdifferential of a function f : Rd → R at a point x̄ is the set

∂εf(x̄) := {v ∈ Rd : f(x)− f(x̄) ≥ 〈v, x− x̄〉 − ε for all x ∈ Rd}.

In particular, notice that x̄ is an ε-approximate minimizer of f if and only if the inclusion 0 ∈

∂εf(x̄) holds. For the purpose of analysis, it is useful to decompose the function Ft,α(z, y, v)

into a sum

Ft,α(z; y, v) = Fα(z; y, v) +
1

2t
‖z − v‖2

The sum rule for ε-subdifferentials [53, Theorem 2.1] guarantees

∂εFt,α(·; y, v) ⊆ ∂εFα(·; y, v) + ∂ε

(
1

2t
‖ · −v‖2

)
.

Lemma A.1.2. The ε-subdifferential ∂ε
(

1
2t
‖ · −v‖2

)
at a point z̄ is the set{

t−1(z − v + γ) :
1

2t
‖γ‖2 ≤ ε

}
.

Proof. This follows by completing the square in the definition of the ε-subdifferential.

In particular, suppose that z+ is an ε-approximate minimizer of Ft,α(·; y, v). Then

Lemma A.1.2 shows that there is a vector γ satisfying ‖γ‖2 ≤ 2tε and

t−1(v − z+ − γ) ∈ ∂εFα(z+; y, v). (A.2)

We are now ready to prove Theorem 2.8.7.

Proof of Theorem 2.8.7. Let xk, yk, and vk be the iterates generated by Algorithm 11. We

imitate the proof of Theorem 2.8.3, while taking into account inexactness. First, inequality

(2.74) is still valid:

F (xk) ≤ F (xk; yk) + µ
2
‖xk − yk‖2 .

Since xk is an εk-approximate minimizer of the function F (·; yk) = F1/µ̃,1(·; yk, yk), from

(A.2), we obtain a vector γk satisfying ‖γk‖2 ≤ 2εkµ̃
−1 and µ̃(yk − xk − γk) ∈ ∂εkF (xk; yk).

136

Consequently for all points w we deduce the inequality

F (xk) ≤ F (w; yk) + µ
2
‖xk − yk‖2 + 〈µ̃(yk − xk − γk), xk − w〉+ εk. (A.3)

Set wk := akvk + (1 − ak)xk−1 and define ck := xk − wk. Taking into account wk − yk =

ak(vk − vk−1), the previous inequality with w = wk becomes

F (xk) ≤ h(c(yk) + ak∇c(yk)(vk − vk−1)) + akg(vk) + (1− ak)g(xk−1) + µ
2
‖xk − yk‖2

+ µ̃〈yk − xk, ck〉 − µ̃〈γk, ck〉+ εk. (A.4)

By completing the square, one can check

µ̃〈yk − xk, ck〉 = µ̃
2

(
‖akvk − akvk−1‖2 − ‖xk − yk‖2 − ‖ck‖2).

Observe in addition

−µ̃〈γk, ck〉 − µ̃
2
‖ck‖2 = − µ̃

2
‖γk + ck‖2 + µ̃

2
‖γk‖2 .

By combining the two equalities with (A.4) and dropping the term µ̃
2
‖γk + ck‖2, we deduce

F (xk) ≤ h(c(yk) + ak∇c(yk)(vk − vk−1)) + akg(vk) + (1− ak)g(xk−1)

+
µ̃a2k

2
‖vk − vk−1‖2 − µ̃−µ

2
‖xk − yk‖2 + εk + µ̃

2
‖γk‖2 .

(A.5)

Next recall that vk is a δk-approximate minimizer of F(µ̃ak)−1,ak(·; yk, vk−1). Using (A.2), we

obtain a vector ηk satisfying ‖ηk‖2 ≤ 2δk
akµ̃

and akµ̃(vk−1 − vk − ηk) ∈ ∂δkFak(vk; yk, vk−1).

Hence, we conclude for all the points x the inequality

Fak(vk; yk, vk−1) ≤ 1

ak
h(c(yk) + ak∇c(yk)(x− vk−1) + g(x)

+ µ̃ak〈vk−1 − vk − ηk, vk − x〉+ δk.

(A.6)

Completing the square, one can verify

〈vk−1 − vk, vk − x〉 =
1

2
(‖x− vk−1‖2 − ‖x− vk‖2 − ‖vk − vk−1‖2).

137

Hence combining this with (A.5) and (A.6), while taking into account the inequalities ‖γk‖2 ≤

2εkµ̃
−1 and ‖ηk‖2 ≤ 2δk

akµ̃
, we deduce

F (xk) ≤h(c(yk) + ak∇c(yk)(x− vk−1) + akg(x) + (1− ak)g(xk−1)

+
µ̃a2k

2
(‖x− vk−1‖2 − ‖x− vk‖2) + akδk − µ̃−µ

2
‖xk − yk‖2 + 2εk

+ a
3/2
k

√
2µ̃δk · ‖vk − x‖.

Following an analogous part of the proof of Theorem 2.8.3, define now the point x̂ =

akx+ (1− ak)xk−1. Taking into account ak(x− vk−1) = x̂− yk, we conclude

h(c(yk) +∇c(yk)(x̂− yk)) ≤ (h ◦ c)(x̂) +
r

2
‖x̂− yk‖2

≤ akh(c(x)) + (1− ak)h(c(xk−1))

+ ρak(1− ak)‖x− xk−1‖2 +
ra2

k

2
‖x− vk−1‖2.

Thus we obtain

F (xk) ≤akF (x) + (1− ak)F (xk−1) + ρak‖x− xk−1‖2 +
ra2

k

2
‖x− vk−1‖2

+
µ̃a2k

2
(‖x− vk−1‖2 − ‖x− vk‖2) + akδk − µ̃−µ

2
‖xk − yk‖2 + 2εk

+ a
3/2
k

√
2µ̃δk · ‖vk − x‖.

As in the proof of Theorem 2.8.3, setting x = x∗, we deduce

F (xN)− F ∗

a2
N

+
µ̃

2
‖x∗ − vN‖2 ≤ µ̃

2
‖x∗ − v0‖2 + ρM2

N∑
i=1

1

ai
+
NrM2

2
+

N∑
i=1

δi
ai

− µ̃− µ
2

N∑
i=1

‖xi − yi‖2

a2
i

+ 2
N∑
i=1

εi
a2
i

+
√

2µ̃
N∑
i=1

‖x∗ − vi‖ ·
√
δi
ai
.

In particular, we have

µ̃− µ
2

N∑
i=1

‖xi − yi‖2

a2
i

≤ µ̃
2
‖x∗ − v0‖2 +

ρM2N(N + 3)

4
+
NrM2

2
+

N∑
i=1

δi
ai

+ 2
N∑
i=1

εi
a2
i

+
√

2µ̃
N∑
i=1

‖x∗ − vi‖ ·
√
δi
ai
.

(A.7)

138

and

µ̃

2
‖x∗ − vN‖2 ≤ µ̃

2
‖x∗ − v0‖2 +

ρM2N(N + 3)

4
+
NrM2

2
+

N∑
i=1

δi
ai

+ 2
N∑
i=1

εi
a2
i

+
√

2µ̃
N∑
i=1

‖x∗ − vi‖ ·
√
δi
ai
.

Appealing to Lemma A.1.1 with dk = ‖x∗ − vk‖, we conclude ‖x∗ − vN‖ ≤ AN for the

constant

AN :=

√
2

µ̃

N∑
i=1

√
δi
ai

+

+

‖x∗ − v0‖2 +
M2N(r + ρ

2
(N + 3))

µ̃
+

2

µ̃

N∑
i=1

δi
ai

+
4

µ̃

N∑
i=1

εi
a2
i

+
2

µ

(
N∑
i=1

√
δi
ai

)2
1/2

.

Finally, combining inequality (A.7) with Lemma 2.5.1 we deduce

µ̃− µ
2

N∑
i=1

‖G1/µ̃(yi)‖2

a2
i

≤ 2µ̃(µ̃− µ)
N∑
i=1

εi
a2
i

+ 2µ̃2
(µ̃

2
‖x∗ − v0‖2 +

ρM2N(N + 3)

4
+
NrM2

2
+

+
N∑
i=1

δi
ai

+ 2
N∑
i=1

εi
a2
i

+ AN
√

2µ̃
N∑
i=1

√
δi
ai

)
.

Hence

min
i=1,...,N

‖G1/µ̃(yi)‖2 ≤
96µ̃

∑N
i=1

εi
a2i

N(N + 1)(2N + 1)
+

96µ̃2

µ̃− µ

(
µ̃‖x∗ − v0‖2

2N(N + 1)(2N + 1)

+
M2(r + ρ

2
(N + 3))

2(N + 1)(2N + 1)
+

∑N
i=1(δiai+2εi

a2i
) + AN

√
2µ̃
∑N

i=1

√
δi
ai

N(N + 1)(2N + 1)

)
.

Combining the first and the fourth terms, the result follows. The efficiency estimate on

F (xN)−F ∗ in the setting r = 0 follows by the same argument as in the proof of Theorem 2.8.3.

A.2 Backtracking

In this section, we present a variant of Algorithm 9 where the constants L and β are unknown.

The scheme is recorded as Algorithm 16 and relies on a backtracking line-search, stated in

Algorithm 15.

139

Algorithm 15: Backtracking(η, α, t, y)

Initialize : A point y and real numbers η, α ∈ (0, 1) and t > 0.

while F (Sαt(y)) > Ft(Sαt(y)) do
t← ηt

end

Set µ̃ = 1
αt

and x = Sαt(y)

return µ̃, t, x;

Algorithm 16: Accelerated prox-linear method with backtracking

Initialize : Fix two points x0, v0 ∈ dom g and real numbers t0 > 0 and η, α ∈ (0, 1).

Step k: (k ≥ 1) Compute

ak = 2
k+1

yk = akvk−1 + (1− ak)xk−1

(µ̃k, tk, xk) = Backtracking(η, α, tk−1, yk)

vk = S 1
µ̃kak

, ak
(yk, vk−1)

The backtracking procedure completes after only logarithmically many iterations.

Lemma A.2.1 (Termination of backtracking line search). Algorithm 15 on input (η, α, t, y)

terminates after at most 1 +
⌈

log(tµ)
log(η−1)

⌉
evaluations of Sα ·(y).

Proof. This follows immediately by observing that the loop in Algorithm 15 terminates as

soon as t ≤ µ−1.

We now establish convergence guarantees of Algorithm 16, akin to those of Algorithm 9.

140

Theorem A.2.2 (Convergence guarantees with backtracking). Fix real numbers t0 > 0 and

η, α ∈ (0, 1) and let x∗ be any point satisfying F (x∗) ≤ F (xk) for all iterates xk generated by

Algorithm 16. Define µ̃max := max{(αt0)−1, (αη)−1µ} and µ̃0 := (αt0)−1. Then the efficiency

estimate holds:

min
j=1,...,N

∥∥G1/µ̃j(yj)
∥∥2 ≤ 24µ̃max

1− α

(
µ̃0 ‖x∗ − v0‖2

N(N + 1)(2N + 1)
+
M2

(
r + ρ

2
(N + 3)

)
(N + 1)(2N + 1)

)
.

In the case r = 0, the inequality above holds with the second summand on the right-hand-side

replaced by zero (even if M = ∞), and moreover the efficiency bound on function values

holds:

F (xN)− F (x∗) ≤ 2µ̃max ‖x∗ − v0‖2

(N + 1)2
.

Proof. We closely follow the proofs of Lemma 2.8.5 and Theorem 2.8.3, as such, we omit

some details. For k ≥ 1, the stopping criteria of the backtracking algorithm guarantees that

analogous inequalities (2.74) and (2.75) hold, namely,

F (xk) ≤ h
(
c(yk) +∇c(yk)(xk − yk)

)
+ g(xk) +

1

2tk
‖xk − yk‖2 (A.8)

and

h
(
c(yk) +∇c(yk)(xk − yk)

)
+ g(xk) ≤ h

(
c(yk) +∇c(yk)(wk − yk)

)
+
µ̃k
2

(
‖wk − yk‖2 − ‖wk − xk‖2 − ‖xk − yk‖2)

+ akg(vk) + (1− ak)g(xk−1)

(A.9)

where wk := akvk + (1− ak)xk−1. By combining (A.8) and (A.9) together with the definition

that µ̃k = (αtk)
−1, we conclude

F (xk) ≤ h
(
c(yk) +∇c(yk)(wk − yk)

)
+ akg(vk) + (1− ak)g(xk−1)

+
µ̃k
2

(
‖wk − yk‖2 − ‖wk − xk‖2)+

(1− α−1)

2tk
‖xk − yk‖2 .

(A.10)

We note the equality wk− yk = ak(vk− vk−1). Observe that (2.76) holds by replacing µ̃
2

with

µ̃k
2

; hence, we obtain for all points x

h
(
c(yk) + ak∇c(yk)(vk − vk−1)

)
+ akg(vk) ≤ h

(
c(yk) + ak∇c(yk)(x− vk−1)

)
+ akg(x) +

µ̃ka
2
k

2

(
‖x− vk−1‖2 − ‖x− vk‖2 − ‖vk − vk−1‖2) . (A.11)

141

Notice also that (2.77) holds as stated. Combining the inequalities (2.77), (A.10), and (A.11),

we deduce

F (xk) ≤akF (x) + (1− ak)F (xk−1) +
µ̃ka

2
k

2

(
‖x− vk−1‖2 − ‖x− vk‖2)

− (α−1 − 1)

2tk
‖yk − xk‖2 + ρak(1− ak)‖x− xk−1‖2 +

ra2
k

2
‖x− vk−1‖2.

(A.12)

Plugging in x = x∗, subtracting F (x∗) from both sides, and rearranging yields

F (xk)− F (x∗)

a2
k

+
µ̃k
2
‖x∗ − vk‖2 ≤ 1− ak

a2
k

(F (xk−1)− F (x∗)) +
µ̃k
2
‖x∗ − vk−1‖2

+
ρM2

ak
+
rM2

2
− (α−1 − 1)

2tka2
k

‖yk − xk‖2.

This is exactly inequality (2.78) with µ̃
2

replaced by µ̃k
2

and µ̃−µ
2

replaced by (α−1−1)
2tk

; Using

the fact that the sequence {µ̃k}∞k=0 is nondecreasing and 1−ak
a2k
≤ 1

a2k−1
, we deduce

F (xk)− F (x∗)

a2
k

+
µ̃k
2
‖x∗ − vk‖2 ≤ µ̃k

µ̃k−1

(
F (xk−1)− F (x∗)

a2
k−1

+
µ̃k−1

2
‖x∗ − vk−1‖2

+
ρM2

ak
+
rM2

2
− (α−1 − 1)

2tka2
k

‖yk − xk‖2

)
.

(A.13)

Notice µ̃k ≤ α−1 max
{
t−1
0 , η−1µ

}
=: µ̃max. Recursively applying (A.13) N times, we get

F (xN)− F (x∗)

a2
N

+
µ̃N
2
‖x∗ − vN‖2 ≤

(
N∏
j=1

µ̃j
µ̃j−1

)(
µ̃0

2
‖x∗ − v0‖2 +

N∑
j=1

ρM2

aj

+
NrM2

2
−

N∑
j=1

(α−1 − 1)

2tj
· ‖xj − yj‖

2

a2
j

)
.

(A.14)

By the telescoping property of
∏N

j=1
µ̃j
µ̃j−1
≤ µ̃max

µ̃0
, we conclude

µ̃max

µ̃0

N∑
j=1

(α−1 − 1)

2tj
· ‖xj − yj‖

2

a2
j

≤ µ̃max

µ̃0

(
µ̃0

2
‖x∗ − v0‖2 + ρM2

(
N∑
j=1

1

aj

)
+
NrM2

2

)
. (A.15)

142

Using the inequality (A.15) and αtj = µ̃−1
j ≥ µ̃−1

max for all j, we conclude

(
(α−1 − 1)α

2µ̃0

)(N∑
j=1

1

a2
j

)
min

j=1,...,N
‖µ̃j(xj − yj)‖2

≤ µ̃max

µ̃0

(
µ̃0

2
‖x∗ − v0‖2 + ρM2

(
N∑
j=1

1

aj

)
+
NrM2

2

)
.

The result follows by mimicking the rest of the proof in Theorem 2.8.3. Finally, suppose

r = 0, and hence we can assume ρ = 0. Inequality (A.14) then implies

F (xN)− F (x∗)

a2
N

+
µ̃N
2
‖x∗ − vN‖2 ≤ µ̃max

µ̃0

· µ̃0

2
‖x∗ − v0‖2 .

The claimed efficiency estimate follows.

143

Appendix B

APPENDIX FOR CHAPTER 3

B.1 Convergence rates in strongly-convex composite minimization

We now briefly discuss convergence rates, which are typically given in different forms in

the convex and non-convex cases. If the weak-convex constant is known, we can form a

strongly convex approximation similar to [69]. For that purpose, we consider a strongly-

convex composite minimization problem

min
x∈Rp

h(x) := f0(x) + ψ(x),

where f0 : Rp → R is µ-strongly convex and smooth with L-Lipschitz continuous gradient

∇f0, and ψ : Rp → R is a closed convex function with a computable proximal map

proxβψ(y) := argmin
z∈Rp

{
ψ(y) + 1

2β
‖z − y‖2

}
.

Let x∗ be the minimizer of h and h∗ be the minimal value of h. In general, there are three

types of measures of optimality that one can monitor: ‖x−x∗‖2, h(x)−h∗, and dist(0, ∂h(x)).

Since h is strongly convex, the three of them are equivalent in terms of convergence rates

if one can take an extra prox-gradient step:

[x]L := proxψ/L(x− L−1∇f0(x)).

To see this, define the displacement vector, also known as the gradient mapping, gL(x) :=

L(x− [x]L), and notice the inclusion gL(x) ∈ ∂h([x]L). In particular gL(x) = 0 if and only if

x is the minimizer of h. These next inequalities follow directly from Theorem 2.2.7 in [81]:

1
2L
‖gL(x)‖ ≤‖x− x∗‖ ≤ 2

µ
‖gL(x)‖

µ
2
‖x− x∗‖2 ≤h(x)− h∗ ≤ 1

2µ
|∂h(x)|2

2µ(h([x]L)− h∗) ≤‖gL(x)‖2 ≤ 2L(h(x)− h([x]L))

144

Thus, an estimate of any one of the four quantities ‖x − x∗‖, h(x) − h∗, ‖gL(x)‖, or

dist(0, ∂h(x)) directly implies an estimate of the other three evaluated either at x or at

[x]L.

B.2 Theoretical analysis of the basic algorithm

We present here proofs of the theoretical results of the paper. Althroughout the proofs, we

shall work under the Assumptions on f stated in Section 3.3 and the Assumptions on M

stated in Section 3.4.

B.2.1 Convergence guarantee of 4WD-Catalyst

In Theorem 3.3.1 and Theorem 3.3.2 under an appropriate tolerance policy on the proximal

subproblems (3.5) and (3.7), 4WD-Catalyst performs no worse than an exact proximal point

method in general, while automatically accelerating when f is convex. For this, we need the

following observations.

Lemma B.2.1 (Growth of (αk)). Suppose the sequence {αk}k≥1 is produced by Algorithm 12.

Then, the following bounds hold for all k ≥ 1:
√

2

k + 2
≤ αk ≤

2

k + 1
.

Proof. This result is noted without proof in a remark of [109]. For completeness, we give

below a simple proof using induction. Clearly, the statement holds for k = 1. Assume the

inequality on the right-hand side holds for k. By using the induction hypothesis, we get

αk+1 =

√
α4
k + 4α2

k − α2
k

2
=

2√
1 + 4/α2

k + 1
≤ 2√

1 + (k + 1)2 + 1
≤ 2

k + 2
,

as claimed and the expression for αk+1 is given by explicitly solving (3.9). To show the lower

bound, we note that for all k ≥ 1, we have

α2
k+1 = (1− αk+1)α2

k =
k+1∏
i=2

(1− αi)α2
1 =

k+1∏
i=2

(1− αi).

145

Using the established upper bound αk ≤ 2
k+1

yields

α2
k+1 ≥

k+1∏
i=2

(
1− 2

i+ 1

)
=

2

(k + 2)(k + 1)
≥ 2

(k + 2)2
.

The result follows.

Lemma B.2.2 (Prox-gradient and near-stationarity). If y+ satisfies dist(0, ∂fκ(y
+; y)) < ε,

then the following inequality holds:

dist
(
0, ∂f(y+)

)
≤ ε+

∥∥κ(y+ − y)
∥∥ .

Proof. We can find ξ ∈ ∂fκ(y+; y) with ‖ξ‖ ≤ ε. Taking into account ∂fκ(y
+; y) = ∂f(y+) +

κ(y+ − y) the result follows.

Next we establish convergence guarantees of Theorem 3.3.1 and Theorem 3.3.2 for 4WD-

Catalyst .

Proof of Theorem 3.3.2 and Theorem 3.3.2. The proof of Theorem 3.3.1 follows the analy-

sis of inexact proximal point method [69, 51, 6]. The descent condition in (3.11) implies

{f(xk)}k≥0 are monotonically decreasing. From this, we deduce

f(xk−1) = fκ(xk−1;xk−1) ≥ fκ(x̄k;xk−1) ≥ f(xk) +
κ

2
‖x̄k − xk−1‖2 . (B.1)

Using the adaptive stationarity condition (3.11), we apply Lemma B.2.2 with y = xk−1,

y+ = x̄k and ε = κ ‖x̄k − xk−1‖; hence we obtain

dist(0, ∂f(x̄k)) ≤ 2 ‖κ(x̄k − xk−1)‖ .

We combine the above inequality with (B.1) to deduce

dist2(0, ∂f(x̄k)) ≤ 4 ‖κ(x̄k − xk−1)‖2 ≤ 8κ (f(xk−1)− f(xk)) . (B.2)

146

Summing j = 1 to N , we conclude

min
j=1,...,N

{
dist2(0, ∂f(x̄j))

}
≤ 4

N

N∑
j=1

‖κ(x̄k − xk−1)‖2)

≤ 8κ

N

(
N∑
j=1

f(xj−1)− f(xj)

)

≤ 8κ

N
(f(x0)− f ∗) .

Next, suppose the function f is convex. Our analysis is similar to that of [109, 4]. Using the

stopping criteria (3.12), fix an ξk ∈ ∂fκ(x̃k; yk) with ‖ξk‖ < κ
k+1
‖x̃k − yk‖. For any x ∈ Rn,

Equation (3.10), and the strong convexity of the function fκ(·; yk) yields

f(xk) ≤ f(x̃k) ≤ f(x) +
κ

2

(
‖x− yk‖2 − ‖x− x̃k‖2 − ‖x̃k − yk‖2)+ ξTk (x̃k − x) .

We substitute x = αkx
∗ + (1− αk)xk−1 where x∗ is any minimizer of f . Using the convexity

of f , the norm of ξk, and Equations (3.6) and (3.8), we deduce

f(xk) ≤ αkf(x∗) + (1− αk)f(xk−1) +
α2
kκ

2

(
‖x∗ − vk−1‖2 − ‖x∗ − vk‖2)

− κ

2
‖x̃k − yk‖2 +

αkκ

k + 1
‖x̃k − yk‖ ‖x∗ − vk‖ . (B.3)

Set θk = 1
k+1

. Completing the square on Equation (B.3), we obtain

−κ
2
‖x̃k − yk‖2 + αkθkκ ‖x̃k − yk‖ ‖x∗ − vk‖ ≤

κ

2
(αkθk)

2 ‖x∗ − vk‖2 .

Hence, we deduce

f(xk)− f ∗ ≤ (1− αk)(f(xk−1)− f ∗) +
α2
kκ

2

(
‖x∗ − vk−1‖2 − ‖x∗ − vk‖2)

+
κ

2
(αkθk)

2 ‖x∗ − vk‖2 .

= (1− αk)(f(xk−1)− f ∗) +
α2
kκ

2

(
‖x∗ − vk−1‖2 −

(
1− θ2

k

)
‖x∗ − vk‖2)

Denote Ak := 1 − θ2
k. Subtracting f ∗ from both sides and using the inequality 1−αk

α2
k

= 1
α2
k−1

147

and α1 ≡ 1, we derive the following recursion argument:

f(xk)− f ∗

α2
k

+
Akκ

2
‖x∗ − vk‖2 ≤ 1− αk

α2
k

(
f(xk−1)− f ∗

)
+
κ

2
‖x∗ − vk−1‖2

≤ 1

Ak−1

(
f(xk−1)− f ∗

α2
k−1

+
Ak−1κ

2
‖x∗ − vk−1‖2

)
.

The last inequality follows because 0 < Ak−1 ≤ 1. Iterating N times,we deduce

f(xN)− f ∗

α2
N

≤
N∏
j=2

1

Aj−1

(κ
2
‖x∗ − v0‖2

)
. (B.4)

We note
N∏
j=2

1

Aj−1

=
1∏N

j=2

(
1− 1

(j+1)2

) ≤ 2; (B.5)

thereby concluding the result. Summing up (B.2) from j = N + 1 to 2N , we obtain

min
j=1,...,2N

{
dist2(0, ∂f(x̄j))

}
≤ 4

N

2N∑
j=N+1

‖κ(x̄k − xk−1)‖2)

≤ 8κ

N

(
2N∑

j=N+1

f(xj−1)− f(xj)

)

≤ 8κ

N
(f(xN)− f ∗)

Combining this inequality with (B.4), the result is shown.

B.3 Analysis of 4WD-Catalyst-Automatic and Auto-adapt

Linear convergence interlude. Our assumption on the linear rate of convergence of M

(see (3.14)) may look strange at first sight. Nevertheless, most linearly convergent first-order

methods M for composite minimization either already satisfy this assumption or can be

made to satisfy it by introducing an extra prox-gradient step. To see this, recall the convex

composite minimization problem from Section B.1

min
z∈Rp

h(z) := f0(z) + ψ(z),

where

148

1. f0 : Rp → R is convex and C1-smooth with the gradient ∇f0 that is L-Lipschitz,

2. ψ : Rp → R is a closed convex function with a computable proximal map

proxβψ(y) := argmin
z

{ψ(y) + 1
2β
‖z − y‖2}.

See [89] for a survey of proximal maps. Typical linear convergence guarantees of an opti-

mization algorithm assert existence of constants A ∈ R and τ ∈ (0, 1) satisfying

h(zt)− h∗ ≤ A(1− τ)t(h(z0)− h∗) (B.6)

for each t = 0, 1, 2, . . . ,∞. To bring such convergence guarantees into the desired form

(3.14), define the prox-gradient step

[z]L := proxψ/L(z − L−1∇f0(z)),

and the displacement vector

gL(z) = L(z − [z]L),

and notice the inclusion gL(z) ∈ ∂h([z]L). The following inequality follows from [86]:

‖gL(z)‖2 ≤ 2L(h(z)− h([z]L)) ≤ 2L(h(z)− h∗).

Thus, the linear rate of convergence (B.6) implies

‖gL(zt)‖2 ≤ 2LA(1− τ)t(h(z0)− h∗),

which is exactly in the desired form (3.14).

B.3.1 Convergence analysis of the adaptive algorithm: 4WD-Catalyst-Automatic

First, under some reasonable assumptions on the method M (see Section 3.4.1), the sub-

method Auto-adapt terminates.

Lemma B.3.1 (Auto-adapt terminates). Assume that τκ → 1 when κ→ +∞. The procedure

Auto-adapt(x, κ, ε, T) terminates after finitely many iterations.

149

Proof. Due to our assumptions on M and the expressions fκ(x;x) = f(x) and f ∗κ(x) ≥ f ∗,

we have

dist2
(
0, ∂fκ(zT ;x)

)
≤ A(1− τκ)T

(
f(x)− f ∗κ(x)

)
≤ A(1− τκ)T

(
f(x)− f ∗)

)
. (B.7)

Since τκ tends to one, for all sufficiency large κ, we can be sure that the right-hand-side

is smaller than ε2. On the other hand, for κ > ρ, the function fκ(·;x) is (κ − ρ)-strongly

convex and therefore we have dist2(0, ∂fκ(zT ;x)) ≥ 2(κ− ρ)(fκ(zT ;x)− f ∗κ(x)). Combining

this with (B.7), we deduce

fκ(zT ;x)− f ∗κ(x) ≤ A(1− τκ)T

2(κ− ρ)

(
f(x)− f ∗κ(x)

)
.

Letting κ→∞, we deduce fκ(zT ;x) ≤ f(x), as required. Thus the loop indeed terminates.

We prove the main result, Theorem 3.4.3, for 4WD-Catalyst-Automatic.

Proof of Theorem 3.4.3. The proof closely resembles the proofs of Theorem 3.3.2 and The-

orem 3.3.2, so we omit some of the details. The main difference in the proof is that we

keep track of the effects the parameters κcvx and κ0 have on the inequalities as well as the

sequence of κk. Since {f(xk)}k≥0 are monotonically decreasing, we deduce

f(xk−1) = fκk(xk−1;xk−1) ≥ fκk(x̄k;xk−1) ≥ f(xk) +
κk
2
‖x̄k − xk−1‖2 . (B.8)

Using the adaptive stationary condition (3.18), we take ε = κk ‖x̄k − xk−1‖ in Lemma B.2.2

to obtain

dist(0, ∂f(x̄k)) ≤ 2 ‖κk(x̄k − xk−1)‖ .

We combine the above inequality with (B.8) to deduce

dist2(0, ∂f(x̄k)) ≤ 4 ‖κk(x̄k − xk−1)‖2 ≤ 8κmax (f(xk−1)− f(xk)) . (B.9)

150

Summing j = 1 to N , we conclude

min
j=1,...,N

{
dist2(0, ∂f(x̄j))

}
≤ 4

N

N∑
j=1

2 ‖κk(x̄k − xk−1)‖2)

≤ 8κmax

N

(
N∑
j=1

f(xj−1)− f(xj)

)

≤ 8κmax

N
(f(x0)− f ∗) .

Suppose the function f is convex. Using in the stopping criteria (3.17) in replacement of

(3.11), we deduce a similar expression as (B.3):

f(xk) ≤ αkf(x∗) + (1− αk)f(xk−1) +
α2
kκcvx

2

(
‖x∗ − vk−1‖2 − ‖x∗ − vk‖2)

− κcvx

2
‖x̃k − yk‖2 +

αkκcvx

k + 1
‖x̃k − yk‖ ‖x∗ − vk‖ .

Denote θk = 1
k+1

. Completing the square, we obtain

−κcvx

2
‖x̃k − yk‖2 + αkθkκcvx ‖x̃k − yk‖ ‖x∗ − vk‖ ≤

κcvx

2
(αkθk)

2 ‖x∗ − vk‖2 .

Hence, we deduce

f(xk)− f ∗ ≤ (1− αk)(f(xk−1)− f ∗) +
α2
kκcvx

2

(
‖x∗ − vk−1‖2 − ‖x∗ − vk‖2)

+
κcvx

2
(αkθk)

2 ‖x∗ − vk‖2 .

= (1− αk)(f(xk−1)− f ∗) +
α2
kκcvx

2

(
‖x∗ − vk−1‖2 −

(
1− θ2

k

)
‖x∗ − vk‖2)

Denote Ak := 1 − θ2
k. Following the standard recursion argument as in the proofs of Theo-

rem 3.3.2 and Theorem 3.3.2, we conclude

f(xk)− f ∗

α2
k

+
Akκcvx

2
‖x∗ − vk‖2 ≤ 1− αk

α2
k

(
f(xk−1)− f ∗

)
+
κcvx

2
‖x∗ − vk−1‖2

≤ 1

Ak−1

(
f(xk−1)− f ∗

α2
k−1

+
Ak−1κcvx

2
‖x∗ − vk−1‖2

)
.

The last inequality follows because 0 < Ak−1 ≤ 1. Iterating N times, we deduce

f(xN)− f ∗

α2
N

≤
N∏
j=2

1

Aj−1

(κcvx

2
‖x∗ − v0‖2

)
. (B.10)

151

We note
N∏
j=2

1

Aj−1

=
1∏N

j=2

(
1− 1

(j+1)2

) ≤ 2;

thus the result is shown. Summing up (B.9) from j = N + 1 to 2N , we obtain

min
j=1,...,2N

{
dist2(0, ∂f(x̄j))

}
≤ 4

N

2N∑
j=N+1

‖κk(x̄k − xk−1)‖2)

≤ 8κmax

N

(
2N∑

j=N+1

f(xj−1)− f(xj)

)

≤ 8κmax

N
(f(xN)− f ∗)

Combining this inequality with (B.10), the result is shown.

B.4 Inner-loop complexity: proof of Theorem 3.4.4

Recall, the following notation

f0(x; y) =
1

n

n∑
i=1

fi(x) +
κ

2
‖x− y‖2

y0 = prox1/(κ+L)f0

(
y − 1

κ+ L
∇f0(y; y)

)
. (B.11)

Lemma B.4.1 (Relationship between function values and iterates of the prox). Assuming

ψ(x) is convex and the parameter κ > ρ, then

fκ(y
0; y)− f ∗κ(y) ≤ κ+ L

2
‖y∗ − y‖2 (B.12)

where y∗ is a minima of fκ(·; y) and f ∗κ(y) is the optimal value.

Proof. As the κ is chosen sufficiently large, we know f0(·; y) is convex and differentiable with

(κ+ L)-Lipschitz continuous gradient. Hence, we deduce for all x

f0(y; y) +∇f0(y; y)T (x− y) ≤ f0(x; y). (B.13)

152

Using the definition of y0 and the (κ + L)-Lip. continuous gradient of f0(·; y), we conclude

for all x

fκ(y
0; y) = f0(y0; y) + ψ(y0) ≤ f0(y; y) +∇f0(y; y)T (y0 − y) +

κ+ L

2
‖y0 − y‖2 + ψ(y0)

≤ f0(y; y) +∇f0(y; y)T (x− y) +
κ+ L

2
‖x− y‖2 + ψ(x).

(B.14)

By setting x = y∗ in both (B.13) and (B.14) and combining these results, we conclude

fκ(y
0; y) ≤ f ∗κ(y) +

κ+ L

2
‖y∗ − y‖2 .

Note that if we are not in the composite setting and κ > ρ, then fκ(·, y) is (κ+L)-strongly

convex. Using standard bounds for strongly convex functions, Equation (B.12) follows (see

[81]). We next show an important lemma for deducing the inner complexities.

Lemma B.4.2. Assume κ > ρ. Given ε ≤ κ−ρ
2

, if an iterate z satisfies dist(0, ∂fκ(z; y)) ≤

ε ‖y∗ − y‖ , then

dist(0, ∂fκ(z; y)) ≤ 2ε ‖z − y‖ . (B.15)

Proof. Since κ > ρ, we know fκ(·; y) is (κ− ρ)-strongly convex. Therefore, by [81], we know

‖z − y∗‖ ≤ 1

κ− ρ
dist(0, ∂fκ(z; y)). (B.16)

By the triangle inequality and Equation (B.16), we deduce

dist(0, ∂fκ(z; y)) ≤ ε ‖y∗ − y‖ ≤ ε
(
‖y∗ − z‖+ ‖z − y‖

)
≤ ε

κ− ρ
· dist(0, ∂fκ(z; y)) + ε ‖z − y‖

≤ 1

2
· dist(0, ∂fκ(z; y)) + ε ‖z − y‖ .

The last inequality follows because of the assumption ε ≤ κ−ρ
2

. Rearranging the terms above,

we get the desired result.

153

These two lemmas together give us Theorem 3.4.2.

Proof of Theorem 3.4.2. First, we prove that zT satisfies both adaptive stationary condition

and the descent condition. Recall, the point y0 is defined to be the prox or y depending on

if fκ(·; y) is a composite form or smooth, respectively (see statement of Theorem 3.4.2). By

Lemma B.4.1 (or the remark following it), the starting y0 satisfies

fκ(y
0; y)− f ∗κ(y) ≤ κ+ L

2
‖y∗ − y‖2 .

By the linear convergence assumption ofM (see (3.14)) and the above equation, after T := Tκ

iterations initializing from y0, we have

dist2(0, ∂fκ(zT ; y)) ≤ Aκ(1− τκ)T
(
fκ(y

0; y)− f ∗κ(y)
)

≤ Aκe
−T ·τκ

(
fκ(y

0; y)− f ∗κ(y)
)

≤ (κ− ρ)2

8(L+ κ)
· L+ κ

2
‖y∗ − y‖2

≤ (κ− ρ)2

16
‖y∗ − y‖2 .

(B.17)

Take the square root and apply Lemma B.4.2 yields

dist(0, ∂fκ(zT ; y)) ≤ κ− ρ
2
‖zT − y‖ ≤ κ ‖zT − y‖ ,

which gives the adaptive stationary condition. Next, we show the descent condition. Let

v ∈ ∂fκ(zT ; y) such that ‖v‖ ≤ (κ−ρ) ‖zT − y‖ /2, by the (κ−ρ)-strong convexity of fκ(·; y),

we deduce

fκ(y; y) ≥ fκ(zT ; y) + 〈v, y − zT 〉+
κ− ρ

2
‖zT − y‖2

≥ fκ(zT ; y)− ‖v‖ ‖y − zT‖+
κ− ρ

2
‖zT − y‖2

≥ fκ(zT ; y).

This yields the descent condition which completes the proof for T . The proof for Sκ is

similar to Tκ, so we omit many of the details. In this case, we only need to show the

154

adaptive stationary condition. For convenience, we denote S = Sκ. Following the same

argument as in Equation (B.17) but with S log(k + 1) number of iterations, we deduce

dist2(0, ∂fκ(zS; y)) ≤ (κ− ρ)2

16(k + 1)2
‖y∗ − y‖2 .

By applying Lemma B.4.2, we obtain

dist(0, ∂fκ(zS; y)) ≤ (κ− ρ)

2(k + 1)
‖zT − y‖ ≤

κ

k + 1
‖zS − y‖ ,

which proves the desired result for zS.

Assuming Proposition 3.4.5 and Proposition 3.4.6 hold as well as Lemma B.4.3, we begin

by providing the proof of Theorem 3.4.4.

Proof of Theorem 3.4.4. We consider two cases: (i) the function f is non-convex and (ii) the

function f is convex. First, we consider the non-convex setting. To produce x̄k, the method

M is called

T log
(

4L
κ0

)
/ log(2) (B.18)

number of times. This follows from Proposition 3.4.5 and Lemma B.4.3. The reasoning is

that once κ > ρ+L, which only takes at most log(4L/κ0) number of increases of κ to reach,

then the iterate x̄k satisfies the stopping criteria (3.18). Each time we increase κ we run

M for T iterations. Therefore, the total number of iterations of M is given by multiplying

T with log(4L/κ0). To produce x̃k, the method M is called S log(k + 1) number of times.

(Note: the proof of Theorem 3.4.3 does not need x̃k to satisfy (3.17) in the non-convex case).

Next, suppose the function f is convex. As before, to produce x̄k the method M is

called (B.18) times. To produce x̃k, the method M is called S log(k + 1) number of times.

By Proposition 3.4.6, the iterate x̃k satisfies (3.17); a key ingredient in the proof of Theo-

rem 3.4.3.

B.4.1 Inner complexity for x̄k: proof of Proposition 3.4.5

Next, we supply the proof of Proposition 3.4.5 which shows that by choosing κ large enough,

Algorithm 14 terminates.

155

Proof of Proposition 3.4.5. The idea is to apply Theorem 3.4.2. Since the parameter Aκ

increases with κ, then we upper bound it by Aκk ≤ A4L. Moreover, we have κ − ρ ≥

ρ + L − ρ = L. Lastly, since τκ is increasing in κ, we know 1
τκ
≤ 1

τL
. Plugging these bound

into Theorem 3.4.2, we see that for any smoothing parameter κ satisfying ρ + L < κ < 4L,

we get the desired result.

Next, we compute the maximum number of times we must double κ until κ > ρ+ L.

Lemma B.4.3 (Doubling κ). If we set T and S according to Theorem 3.4.4, then the

doubling of κ0 will terminate as soon as κ > ρ + L. Thus the number of times κ0 must be

doubled in Algorithm 14 is at most

log
(

2(ρ+L)
κ0

)
log(2)

≤

log
(

4L
κ0

)
log(2)

 .
Since κ is doubled (Algorithm 14) and T is chosen as in Proposition 3.4.5 , the maximum

the value κ, κmax, takes is 2(ρ+ L) ≤ 4L.

B.4.2 Inner complexity for x̃k: proof of Proposition 3.4.6

In this section, we prove Proposition 3.4.6, an inner complexity result for the iterates x̃k.

Recall that the inner-complexity analysis for x̃k is important only when f is convex (see

Section 3.4). Therefore, we assume throughout this section that the function f is convex.

We are now ready to prove Proposition 3.4.6.

Proof of Proposition 3.4.6. The proof immediately follows from Theorem 3.4.2 by setting

κ = κcvx and ρ = 0 as the function f is convex.

156

BIBLIOGRAPHY

[1] Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.

Preprint arXiv:1603.05953, 2016.

[2] Z. Allen-Zhu. Natasha: Faster stochastic non-convex optimization via strongly non-

convex parameter. Preprint arXiv:1702.00763, 2016.

[3] A. Aravkin, J.V. Burke, L. Ljung, A. Lozano, and G. Pilonetto. Generalized Kalman

smoothing:modeling and algorithm. Preprint arXiv:1609.06369, 2016.

[4] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[5] D. P. Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[6] D. P. Bertsekas. Convex Optimization Algorithms. Athena Scientific, 2015.

[7] J. Bolte, T.P. Nguyen, J. Peypouquet, and B. Suter. From error bounds to the com-

plexity of first-order descent methods for convex functions. Preprint arXiv:1510.08234,

2015.

[8] J. Bolte and E. Pauwels. Majorization-minimization procedures and convergence of

SQP methods for semi-algebraic and tame programs. Math. Oper. Res., 41(2):442–

465, 2016.

[9] J.M. Borwein and A.S. Lewis. Convex Analysis and Nonlinear Optimization: Theory

and Examples. Springer, 2006.

[10] J.M. Borwein and Q.J. Zhu. Techniques of Variational Analysis. Springer Verlag, New

York, 2005.

157

[11] G. Brassard and P. Bratley. Fundamentals of algorithmics. Prentice Hall, Inc., Engle-

wood Cliffs, NJ, 1996.

[12] S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends

in Machine Learning, 8(3-4):231–357, 2015.

[13] J.V. Burke. Descent methods for composite nondifferentiable optimization problems.

Math. Programming, 33(3):260–279, 1985.

[14] J.V. Burke. An exact penalization viewpoint of constrained optimization. SIAM J.

Control Optim., 29(4):968–998, 1991.

[15] J.V. Burke, F.E. Curtis, H. Wang, and J. Wang. Iterative reweighted linear least

squares for exact penalty subproblems on product sets. SIAM J. Optim., 25(1):261–

294, 2015.

[16] J.V. Burke and M.C. Ferris. A Gauss-Newton method for convex composite optimiza-

tion. Math. Programming, 71(2, Ser. A):179–194, 1995.

[17] R.H. Byrd, J Nocedal, and R.A. Waltz. KNITRO: An integrated package for nonlinear

optimization. In Large-scale nonlinear optimization, volume 83 of Nonconvex Optim.

Appl., pages 35–59. Springer, New York, 2006.

[18] Y. Carmon, J. C. Duchi, O. Hinder, and Aaron Sidford. Accelerated methods for

non-convex optimization. Preprint arXiv:1611.00756, 2016.

[19] Y. Carmon, O. Hinder, J. C. Duchi, and A. Sidford. Convex until proven guilty:

Dimension-free acceleration of gradient descent on non-convex functions. Preprint

arXiv:1705.02766, 2017.

[20] C. Cartis, N.I.M. Gould, and P.L. Toint. On the evaluation complexity of composite

function minimization with applications to nonconvex nonlinear programming. SIAM

J. Optim., 21(4):1721–1739, 2011.

158

[21] C. Cartis, N.I.M. Gould, and P.L. Toint. On the complexity of finding first-order critical

points in constrained nonlinear optimization. Mathematical Programming, 2014.

[22] A. Cauchy. Méthode générale pour la résolution des systèm d’équations simultanées.

Compte Rendu des S’eances de L’Acad’emie des Sciences, A(25):536–538, October

1847.

[23] D.I. Clark. The mathematical structure of Huber’s M-estimator. SIAM journal on

scientific and statistical computing, 6(1):209–219, 1985.

[24] F.H. Clarke, Y. Ledyaev, R.I. Stern, and P.R. Wolenski. Nonsmooth Analysis and

Control Theory. Texts in Math. 178, Springer, New York, 1998.

[25] F.H. Clarke, R.J. Stern, and P.R. Wolenski. Proximal smoothness and the lower-C2

property. Journal of Convex Analysis, 2(1-2):117–144, 1995.

[26] T.F. Coleman and A.R. Conn. Nonlinear programming via an exact penalty function:

global analysis. Math. Programming, 24(2):137–161, 1982.

[27] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to derivative-free opti-

mization, volume 8 of MPS/SIAM Series on Optimization. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society

(MPS), Philadelphia, PA, 2009.

[28] A. Daniilidis, D. Drusvyatskiy, and A.S. Lewis. Orthogonal invariance and identifia-

bility. SIAM J. Matrix Anal. Appl., 35(2):580–598, 2014.

[29] A. Daniilidis, A.S. Lewis, J. Malick, and H. Sendov. Prox-regularity of spectral func-

tions and spectral sets. J. Convex Anal., 15(3):547–560, 2008.

[30] A. Daniilidis and J. Malick. Filling the gap between lower-C1 and lower-C2 functions.

J. Convex Anal., 12(2):315–329, 2005.

159

[31] A. Daniilidis, J. Malick, and H.S. Sendov. Locally symmetric submanifolds lift to

spectral manifolds. Preprint U.A.B. 23/2009, 43 p., arXiv:1212.3936 [math.OC], 2012.

[32] C. Davis. All convex invariant functions of hermitian matrices. Arch. Math., 8:276–278,

1957.

[33] A. J. Defazio, T. S. Caetano, and J. Domke. Finito: A faster, permutable incremental

gradient method for big data problems. In Proc. International Conference on Machine

Learning (ICML), 2014.

[34] A.J. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient

method with support for non-strongly convex composite objectives. In Advances in

Neural Information Processing Systems (NIPS), 2014.

[35] G. Di Pillo and L. Grippo. Exact penalty functions in constrained optimization. SIAM

J. Control Optim., 27(6):1333–1360, 1989.

[36] D. Drusvyatskiy, A.D. Ioffe, and A.S. Lewis. Nonsmooth optimization using

taylor-like models: error bounds, convergence, and termination criteria. Preprint

arXiv:1610.03446, 2016.

[37] D. Drusvyatskiy and M. Larsson. Approximating functions on stratified sets. Trans.

Amer. Math. Soc., 367(1):725–749, 2015.

[38] D. Drusvyatskiy and A.S. Lewis. Error bounds, quadratic growth, and linear conver-

gence of proximal methods. Preprint arXiv:1602.06661, 2016.

[39] D. Drusvyatskiy and C. Paquette. Efficiency of minimizing compositions of convex

functions and smooth maps. Preprint arXiv:1605.00125, 2016.

[40] D. Drusvyatskiy and C. Paquette. Variational analysis of spectral functions simplified.

Journal of Convex Analysis (to appear), 2016.

160

[41] J.C. Duchi and F. Ruan. Solving (most) of a set of quadratic equalities: Composite

optimization for robust phase retrieval. Preprint arXiv:1705.02356, 2017.

[42] J.C. Duchi and F. Ruan. Stochastic methods for composite optimization problems.

Preprint arXiv:1703.08570, 2017.

[43] R. Dutter and P.J. Huber. Numerical methods for the nonlinear robust regression

problem. J. Statist. Comput. Simulation, 13(2):79–113, 1981.

[44] I.I. Eremin. The penalty method in convex programming. Cybernetics, 3(4):53–56

(1971), 1967.

[45] H. Federer. Curvature measures. Transactions of the American Mathematical Society,

93:418–491, 1959.

[46] R. Fletcher. A model algorithm for composite nondifferentiable optimization problems.

Math. Programming Stud., (17):67–76, 1982. Nondifferential and variational techniques

in optimization (Lexington, Ky., 1980).

[47] R. Frostig, R. Ge, S. M. Kakade, and A. Sidford. Un-regularizing: approximate proxi-

mal point algorithms for empirical risk minimization. In Proc. International Conference

on Machine Learning (ICML), 2015.

[48] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and

stochastic programming. Math. Program., 156(1-2, Ser. A):59–99, 2016.

[49] S. Ghadimi, G. Lan, and H. Zhang. Generalized uniformly optimal methods for non-

linear programming. Technical report, Department of Industrial and Systems Engi-

neering, University of Florida, 2015.

[50] N. Gillis. The why and how of nonnegative matrix factorization. In Regularization,

optimization, kernels, and support vector machines, Chapman & Hall/CRC Mach.

Learn. Pattern Recogn. Ser., pages 257–291. CRC Press, Boca Raton, FL, 2015.

161

[51] O. Güler. On the convergence of the proximal point algorithm for convex minimization.

SIAM Journal on Control and Optimization, 29(2):403–419, 1991.

[52] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning With Sparsity: The

Lasso And Generalizations. CRC Press, 2015.

[53] J.-B. Hiriart-Urruty. ε-subdifferential calculus. In Convex analysis and optimization

(London, 1980), volume 57 of Res. Notes in Math., pages 43–92. Pitman, Boston,

Mass.-London, 1982.

[54] P. J. Huber. Robust Statistics. John Wiley and Sons, 2 edition, 2004.

[55] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive

variance reduction. In Advances in Neural Information Processing Systems (NIPS),

2013.

[56] G. Lan. An optimal randomized incremental gradient method. arXiv:1507.02000, 2015.

[57] J.M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathe-

matics. Springer, New York, second edition, 2013.

[58] K. Levenberg. A method for the solution of certain non-linear problems in least squares.

Quart. Appl. Math., 2:164–168, 1944.

[59] A.S. Lewis. Convex analysis on the Hermitian matrices. SIAM J. Optim., 6(1):164–177,

1996.

[60] A.S. Lewis. Derivatives of spectral functions. Math. Oper. Res., 21(3):576–588, 1996.

[61] A.S. Lewis. Nonsmooth analysis of eigenvalues. Math. Program., 84(1, Ser. A):1–24,

1999.

[62] A.S. Lewis. Convex analysis on Cartan subspaces. Nonlinear Anal., 42(5, Ser. A:

Theory Methods):813–820, 2000.

162

[63] A.S. Lewis and H.S. Sendov. Twice differentiable spectral functions. SIAM J. Matrix

Anal. Appl., 23(2):368–386 (electronic), 2001.

[64] A.S. Lewis and H.S. Sendov. Nonsmooth analysis of singular values. I. Theory. Set-

Valued Anal., 13(3):213–241, 2005.

[65] A.S. Lewis and H.S. Sendov. Nonsmooth analysis of singular values. II. Applications.

Set-Valued Anal., 13(3):243–264, 2005.

[66] A.S. Lewis and S.J. Wright. A proximal method for composite minimization. Math.

Program., pages 1–46, 2015.

[67] H. Li and Z. Lin. Accelerated proximal gradient methods for nonconvex programming.

In Advances in Neural Information Processing Systems (NIPS). 2015.

[68] W. Li and J. Swetits. The linear l1 estimator and the huber m-estimator. SIAM

Journal on Optimization, 8(2):457–475, 1998.

[69] H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization.

Advances in Neural Information Processing Systems (NIPS), 2015.

[70] H. Lin, J. Mairal, and Z. Harchaoui. QuickeNing: A generic Quasi-Newton algorithm

for faster gradient-based optimization. Preprint arXiv:1610.00960, 2016.

[71] J. Mairal. Incremental majorization-minimization optimization with application to

large-scale machine learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

[72] J. Mairal, F. Bach, and J. Ponce. Sparse modeling for image and vision processing.

Foundations and Trends in Computer Graphics and Vision, 8(2-3):85–283, 2014.

[73] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization

and sparse coding. JMLR, 11:19–60, 2010.

163

[74] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

J. Soc. Indust. Appl. Math., 11:431–441, 1963.

[75] B.S. Mordukhovich. Variational Analysis and Generalized Differentiation I: Basic

Theory. Grundlehren der mathematischen Wissenschaften, Vol 330, Springer, Berlin,

2006.

[76] J.J. Moré. The Levenberg-Marquardt algorithm: implementation and theory. In Nu-

merical analysis (Proc. 7th Biennial Conf., Univ. Dundee, Dundee, 1977), pages 105–

116. Lecture Notes in Math., Vol. 630. Springer, Berlin, 1978.

[77] S.C. Narula and J.F. Wellington. The minimum sum of absolute errors regression: a

state of the art survey. Internat. Statist. Rev., 50(3):317–326, 1982.

[78] A.S. Nemirovsky and D.B. Yudin. Problem complexity and method efficiency in opti-

mization. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1983.

Translated from the Russian and with a preface by E. R. Dawson, Wiley-Interscience

Series in Discrete Mathematics.

[79] Y. Nesterov. A method for solving the convex programming problem with convergence

rate O(1/k2). Dokl. Akad. Nauk SSSR, 269(3):543–547, 1983.

[80] Y. Nesterov. On an approach to the construction of optimal methods of minimization

of smooth convex functions. Ekonom. i. Mat. Metody, 24:125–161, 1988.

[81] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer,

2004.

[82] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Prog., 2005.

[83] Y. Nesterov. Modified Gauss-Newton scheme with worst case guarantees for global

performance. Optim. Methods Softw., 22(3):469–483, 2007.

164

[84] Y. Nesterov. Primal-dual subgradient methods for convex problems. Math. Program.,

120(1):221–259, April 2009.

[85] Y. Nesterov. How to make the gradients small. OPTIMA, MPS Newsletter, (88):10–11,

2012.

[86] Y. Nesterov. Gradient methods for minimizing composite functions. Math. Program.,

140(1, Ser. B):125–161, 2013.

[87] J. Nocedal and S.J. Wright. Numerical optimization. Springer Series in Operations

Research and Financial Engineering. Springer, New York, second edition, 2006.

[88] C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui. Catalyst accelera-

tion for gradient-based non-convex optimization. Preprint arXiv:1703.10993, 2017.

[89] N. Parikh and S.P. Boyd. Proximal algorithms. Foundations and Trends in Optimiza-

tion, 1(3):123–231, 2014.

[90] E. Pauwels. The value function approach to convergence analysis in composite opti-

mization. Oper. Res. Lett., 44(6):790–795, 2016.

[91] R.A. Poliquin and R.T. Rockafellar. Prox-regular functions in variational analysis.

Trans. Amer. Math. Soc., 348:1805–1838, 1996.

[92] M.J.D. Powell. General algorithms for discrete nonlinear approximation calculations.

In Approximation theory, IV (College Station, Tex., 1983), pages 187–218. Academic

Press, New York, 1983.

[93] M.J.D. Powell. On the global convergence of trust region algorithms for unconstrained

minimization. Math. Programming, 29(3):297–303, 1984.

[94] S.J. Reddi, S. Sra, B. Poczos, and A.J. Smola. Proximal stochastic methods for non-

smooth nonconvex finite-sum optimization. In Advances in Neural Information Pro-

cessing Systems (NIPS), 2016.

165

[95] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[96] R.T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal

on Control and Optimization, 14(5):877–898, 1976.

[97] R.T. Rockafellar. Favorable classes of Lipschitz-continuous functions in subgradient

optimization. In Progress in nondifferentiable optimization, volume 8 of IIASA Col-

laborative Proc. Ser. CP-82, pages 125–143. Internat. Inst. Appl. Systems Anal., Lax-

enburg, 1982.

[98] R.T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317 of Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-

ences]. Springer-Verlag, Berlin, 1998.

[99] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic

average gradient. Mathematical Programming, 2016.

[100] M. Schmidt, Nicolas L.R., and Francis R.B. Convergence rates of inexact proximal-

gradient methods for convex optimization. In J. Shawe-Taylor, R. S. Zemel, P. L.

Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems 24, pages 1458–1466. Curran Associates, Inc., 2011.

[101] H.S. Sendov. Variational spectral analysis. ProQuest LLC, Ann Arbor, MI, 2001.

Thesis (Ph.D.)–University of Waterloo (Canada).

[102] H.S. Sendov. The higher-order derivatives of spectral functions. Linear Algebra Appl.,

424(1):240–281, 2007.

[103] S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual coordinate ascent.

arXiv:1211.2717, 2012.

[104] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate

ascent for regularized loss minimization. Mathematical Programming, 2015.

166

[105] E. Siemsen and K.A. Bollen. Least absolute deviation estimation in structural equation

modeling. Sociol. Methods Res., 36(2):227–265, 2007.

[106] M. Šilhavý. Differentiability properties of isotropic functions. Duke Math. J.,

104(3):367–373, 2000.

[107] J. Sylvester. On the differentiability of O(n) invariant functions of symmetric matrices.

Duke Math. J., 52(2):475–483, 1985.

[108] C.M. Theobald. An inequality for the trace of the product of two symmetric matrices.

Math. Proc. Cambridge Philos. Soc., 77:265–267, 1975.

[109] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization.

Technical Report, 2008.

[110] S. Villa, S. Salzo, L. Baldassarre, and A. Verri. Accelerated and inexact forward-

backward algorithms. SIAM J. Optim., 23(3):1607–1633, 2013.

[111] J. von Neumann. Some matrix inequalities and metrization of matrix-space. Tomck.

Univ. Rev., 1:286–300, 1937.

[112] G.A. Watson. Characterization of the subdifferential of some matrix norms. Linear

Algebra and Its Applications, pages 33–45, 1992.

[113] S.M. Wild. Solving Derivative-Free Nonlinear Least Squares Problems with

POUNDERS. 2014. Argonne National Lab.

[114] B.E. Woodworth and N. Srebro. Tight complexity bounds for optimizing composite

objectives. In Advances in Neural Information Processing Systems (NIPS). 2016.

[115] S.J. Wright. Convergence of an inexact algorithm for composite nonsmooth optimiza-

tion. IMA J. Numer. Anal., 10(3):299–321, 1990.

167

[116] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance

reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

[117] Y. Yuan. On the superlinear convergence of a trust region algorithm for nonsmooth

optimization. Math. Programming, 31(3):269–285, 1985.

[118] Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized em-

pirical risk minimization. In Proc. International Conference on Machine Learning

(ICML), 2015.

[119] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Jour-

nal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320,

2005.

	List of Figures
	Introduction
	Generalizing the derivative
	Oracle complexities
	A brief history of classical first-order methods
	Inertial acceleration beyond convexity

	Efficiency of minimizing compositions of convex functions and smooth maps
	Introduction
	Notation
	The composite problem class
	Prox-gradient size "026B30D Gt"026B30D and approximate stationarity
	Inexact analysis of the prox-linear method
	Overall complexity for the composite problem class
	Finite sum problems
	An accelerated prox-linear algorithm

	4WD-Catalyst Acceleration for Gradient-Based Non-Convex Optimization
	Introduction
	Tools for nonconvex and nonsmooth optimization
	The 4WD-Catalyst algorithm for non-convex optimization
	The 4WD-Catalyst-Automatic algorithm
	Applications to Existing Algorithms
	Experiments

	Variational analysis of spectral functions simplified
	Introduction
	Notation
	Symmetry and orthogonal invariance
	Derivation of the subdifferential formula
	Hessians of C2-smooth spectral functions

	Appendix for Chapter 2
	Proofs of Lemmas 2.5.3, 2.7.1 and Theorems 2.8.6, 2.8.7
	Backtracking

	Appendix for Chapter 3
	Convergence rates in strongly-convex composite minimization
	Theoretical analysis of the basic algorithm
	Analysis of 4WD-Catalyst-Automatic and Auto-adapt
	Inner-loop complexity: proof of Theorem 3.4.4

	Bibliography

